Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Am Soc Nephrol ; 28(12): 3616-3626, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28827403

RESUMO

Targeted delivery of a therapeutic agent to a site of pathology to ameliorate disease while limiting exposure at undesired tissues is an aspirational treatment scenario. Targeting diseased kidneys for pharmacologic treatment has had limited success. We designed an approach to target an extracellular matrix protein, the fibronectin extra domain A isoform (FnEDA), which is relatively restricted in distribution to sites of tissue injury. In a mouse unilateral ureteral obstruction (UUO) model of renal fibrosis, injury induced significant upregulation of FnEDA in the obstructed kidney. Using dual variable domain Ig (DVD-Ig) technology, we constructed a molecule with a moiety to target FnEDA and a second moiety to neutralize TGF-ß After systemic injection of the bispecific TGF-ß + FnEDA DVD-Ig or an FnEDA mAb, chemiluminescent detection and imaging with whole-body single-photon emission computed tomography (SPECT) revealed significantly higher levels of each molecule in the obstructed kidney than in the nonobstructed kidney, the ipsilateral kidney of sham animals, and other tissues. In comparison, a systemically administered TGF-ß mAb accumulated at lower concentrations in the obstructed kidney and exhibited a more diffuse whole-body distribution. Systemic administration of the bispecific DVD-Ig or the TGF-ß mAb (1-10 mg/kg) but not the FnEDA mAb attenuated the injury-induced collagen deposition detected by immunohistochemistry and elevation in Col1a1, FnEDA, and TIMP1 mRNA expression in the obstructed kidney. Overall, systemic delivery of a bispecific molecule targeting an extracellular matrix protein and delivering a TGF-ß mAb resulted in a relatively focal uptake in the fibrotic kidney and reduced renal fibrosis.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Fibronectinas/química , Fibrose/tratamento farmacológico , Humanos , Hibridomas/metabolismo , Rim/diagnóstico por imagem , Rim/patologia , Masculino , Camundongos , Tomografia Computadorizada de Emissão de Fóton Único , Ureter/patologia
2.
J Neurophysiol ; 111(2): 394-404, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155005

RESUMO

N-, T- and P/Q-type voltage-gated Ca(2+) channels are critical for regulating neurotransmitter release and cellular excitability and have been implicated in mediating pathological nociception. A-1264087 is a novel state-dependent blocker of N-, T- and P/Q-type channels. In the present studies, A-1264087 blocked (IC50 = 1.6 µM) rat dorsal root ganglia N-type Ca(2+) in a state-dependent fashion. A-1264087 (1, 3 and 10 mg/kg po) dose-dependently reduced mechanical allodynia in rats with a spinal nerve ligation (SNL) injury. A-1264087 (4 mg/kg iv) inhibited both spontaneous and mechanically evoked activity of spinal wide dynamic range (WDR) neurons in SNL rats but had no effect in uninjured rats. The inhibitory effect on WDR neurons remained in spinally transected SNL rats. Injection of A-1264087 (10 nmol/0.5 µl) into the spinal cord reduced both spontaneous and evoked WDR activity in SNL rats. Application of A-1264087 (300 nmol/20 µl) into the receptive field on the hindpaw attenuated evoked but not spontaneous firing of WDR neurons. Using electrical stimulation, A-1264087 (4 mg/kg iv) inhibited Aδ- and C-fiber evoked responses and after-discharge of WDR neurons in SNL rats. These effects by A-1264087 were not present in uninjured rats. A-1264087 moderately attenuated WDR neuron windup in both uninjured and SNL rats. In summary, these results indicate that A-1264087 selectively inhibited spinal nociceptive transmission in sensitized states through both peripheral and central mechanisms.


Assuntos
Anestésicos/farmacologia , Compostos Azabicíclicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Leucina/análogos & derivados , Neuralgia/fisiopatologia , Nociceptividade/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , Nervos Espinhais/efeitos dos fármacos , Potenciais de Ação , Administração Cutânea , Anestésicos/administração & dosagem , Anestésicos/uso terapêutico , Animais , Compostos Azabicíclicos/uso terapêutico , Bloqueadores dos Canais de Cálcio/administração & dosagem , Bloqueadores dos Canais de Cálcio/uso terapêutico , Relação Dose-Resposta a Droga , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Concentração Inibidora 50 , Injeções Espinhais , Leucina/farmacologia , Leucina/uso terapêutico , Masculino , Neuralgia/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nervos Periféricos/fisiologia , Ratos , Ratos Sprague-Dawley , Nervos Espinhais/fisiologia
4.
Bioorg Med Chem ; 20(13): 4128-39, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22626552

RESUMO

A novel 4-aminocyclopentapyrrolidine series of N-type Ca(2+) channel blockers have been discovered. Enantioselective synthesis of the 4-aminocyclopentapyrrolidines was enabled using N-tert-butyl sulfinamide chemistry. SAR studies demonstrate selectivity over L-type Ca(2+) channels. N-type Ca(2+) channel blockade was confirmed using electrophysiological recording techniques. Compound 25 is an N-type Ca(2+) channel blocker that produces antinociception in inflammatory and nociceptive pain models without exhibiting cardiovascular or motor liabilities.


Assuntos
Acetamidas/síntese química , Analgésicos/síntese química , Bloqueadores dos Canais de Cálcio/síntese química , Canais de Cálcio Tipo N/química , Pirrolidinas/química , Pirrolidinas/síntese química , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo N/metabolismo , Modelos Animais de Doenças , Masculino , Dor/tratamento farmacológico , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
5.
J Pharmacol Exp Ther ; 328(1): 141-51, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18931146

RESUMO

Studies demonstrating the antihyperalgesic and antiallodynic effects of cannabinoid CB(2) receptor activation have been largely derived from the use of receptor-selective ligands. Here, we report the identification of A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], a potent and selective CB(2) agonist as characterized in in vitro pharmacological assays and in in vivo models of pain and central nervous system (CNS) behavior models. In radioligand binding assays, A-836339 displays high affinities at CB(2) receptors and selectivity over CB(1) receptors in both human and rat. Likewise, A-836339 exhibits high potencies at CB(2) and selectivity over CB(1) receptors in recombinant fluorescence imaging plate reader and cyclase functional assays. In addition A-836339 exhibits a profile devoid of significant affinity at other G-protein-coupled receptors and ion channels. A-836339 was characterized extensively in various animal pain models. In the complete Freund's adjuvant model of inflammatory pain, A-836339 exhibits a potent CB(2) receptor-mediated antihyperalgesic effect that is independent of CB(1) or mu-opioid receptors. A-836339 has also demonstrated efficacies in the chronic constrain injury (CCI) model of neuropathic pain, skin incision, and capsaicin-induced secondary mechanical hyperalgesia models. Furthermore, no tolerance was developed in the CCI model after subchronic treatment with A-836339 for 5 days. In assessing CNS effects, A-836339 exhibited a CB(1) receptor-mediated decrease of spontaneous locomotor activities at a higher dose, a finding consistent with the CNS activation pattern observed by pharmacological magnetic resonance imaging. These data demonstrate that A-836339 is a useful tool for use of studying CB(2) receptor pharmacology and for investigation of the role of CB(2) receptor modulation for treatment of pain in preclinical animal models.


Assuntos
Amidas/farmacologia , Ciclopropanos/farmacologia , Inflamação/fisiopatologia , Dor/fisiopatologia , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Procedimentos Cirúrgicos Dermatológicos , Membro Posterior , Humanos , Hiperalgesia/fisiopatologia , Rim/embriologia , Imageamento por Ressonância Magnética/métodos , Masculino , Dor Pós-Operatória/fisiopatologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor CB2 de Canabinoide/agonistas
6.
J Med Chem ; 51(6): 1904-12, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18311894

RESUMO

A series of potent indol-3-yl-tetramethylcyclopropyl ketones have been prepared as CB 2 cannabinoid receptor ligands. Two unsubstituted indoles ( 5, 32) were the starting points for an investigation of the effect of indole ring substitutions on CB 2 and CB 1 binding affinities and activity in a CB 2 in vitro functional assay. Indole ring substitutions had varying effects on CB 2 and CB 1 binding, but were generally detrimental to agonist activity. Substitution on the indole ring did lead to improved CB 2/CB 1 binding selectivity in some cases (i.e., 7- 9, 15- 20). All indoles with the morpholino-ethyl side chain ( 32- 43) exhibited weaker binding affinity and less agonist activity relative to that of their tetrahydropyranyl-methyl analogs ( 5- 31). Several agonists were active in the complete Freund's adjuvant model of chronic inflammatory thermal hyperalgesia ( 32, 15).


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Indóis/farmacologia , Cetonas/farmacologia , Receptor CB2 de Canabinoide/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Ligação Competitiva , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Indóis/síntese química , Indóis/química , Cetonas/síntese química , Cetonas/química , Ligantes , Conformação Molecular , Ratos , Receptor CB1 de Canabinoide/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade
7.
Eur J Pharmacol ; 580(3): 314-21, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18054908

RESUMO

Activation of metabotropic glutamate (mGlu) receptors has previously been shown to play a role in inflammatory or neuropathic pain states. However, the role of mGlu type 1 receptors in post-operative pain remains to be investigated. In the present study, effects of potent and selective mGlu1 receptor antagonists A-841720, A-794282, A-794278, and A-850002 were evaluated in a skin incision-induced post-operative pain model in rats. Post-operative pain was examined 2 h following surgery using weight-bearing difference between injured and uninjured paws as a measure of spontaneous pain. In this model, A-841720, A-794282, A-794278, and A-850002 induced significant attenuation of spontaneous post-operative pain behavior, with ED50s of 10, 50, 50, and 65 micromol/kg i.p., respectively. Depending on the compound, significant motor side effects were also observed at 3 to 10 fold higher doses. These results support the notion that mGlu1 receptor activation plays a significant role in nociceptive transmission in post-operative pain, though motor impairment may be a limiting factor in developing mGlu1 receptor antagonists as novel analgesics.


Assuntos
Analgésicos não Narcóticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Dor Pós-Operatória/prevenção & controle , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Analgésicos não Narcóticos/química , Animais , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Dimetilaminas/química , Dimetilaminas/farmacologia , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/química , Comportamento Exploratório/efeitos dos fármacos , Fluorometria/métodos , Glicina/análogos & derivados , Glicina/farmacologia , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Membro Posterior/cirurgia , Masculino , Estrutura Molecular , Morfina/farmacologia , Dor Pós-Operatória/etiologia , Piridinas/química , Piridinas/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Resorcinóis/farmacologia , Teste de Desempenho do Rota-Rod/métodos , Tiofenos/química , Tiofenos/farmacologia , Trítio
8.
Bioorg Med Chem ; 16(12): 6379-86, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18501613

RESUMO

The synthesis and pharmacological characterization of a novel furan-based class of voltage-gated sodium channel blockers is reported. Compounds were evaluated for their ability to block the tetrodotoxin-resistant sodium channel Na(v)1.8 (PN3) as well as the Na(v)1.2 and Na(v)1.5 subtypes. Benchmark compounds from this series possessed enhanced potency, oral bioavailability, and robust efficacy in a rodent model of neuropathic pain, together with improved CNS and cardiovascular safety profiles compared to the clinically used sodium channel blockers mexiletine and lamotrigine.


Assuntos
Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/farmacologia , Furanos/química , Furanos/farmacologia , Neuralgia/tratamento farmacológico , Piperazinas/química , Piperazinas/farmacologia , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Analgésicos não Narcóticos/síntese química , Animais , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Furanos/síntese química , Humanos , Masculino , Camundongos , Piperazinas/síntese química , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/síntese química , Relação Estrutura-Atividade
9.
J Pharmacol Toxicol Methods ; 94(Pt 1): 34-43, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29684554

RESUMO

INTRODUCTION: The adenine model of kidney disease typically involves dietary delivery of adenine over several weeks. This model can be variable in its disease progression and can result in significant mortality. In the current study, the amount of adenine delivered to rats was controlled by utilizing oral gavage administration over a short period in an attempt to induce robust renal pathology while addressing variability and viability of the animals. METHODS: Adenine (150 or 200 mg/kg) was administered via oral gavage for 10 consecutive days, and assessed over a total of 20 days. RESULTS: Both adenine dose groups manifested pathophysiological features of kidney disease such as proteinuria, elevated serum creatinine and BUN, and tubulointerstitial fibrosis. The animals also displayed a decline in glomerular filtration rate. Renal mRNA expression of genes associated with injury, inflammation, and fibrosis (i.e., Col1a1, Acta2, Serpine1, Timp1, Fn-Eda, Tgfb1, Ccl2, Nlrp3, Aqp1 and Ccnd1) were elevated as were urinary biomarkers that have translational utility (i.e., clusterin, KIM-1, MCP-1, OPN, NGAL, B2M, calbindin, and cystatin C). All disease endpoints were more pronounced in the 200 mg/kg group, however, while measures of tissue fibrosis were sustained, there was partial recovery by day 20 in functional readouts. No mortality was observed in either dose group. DISCUSSION: Short-term delivery of adenine via precise gavage delivery induced a robust model with hallmarks of fibrotic kidney disease, had limited variance between animals, and no animal morbidity within the 20 days studied. This model represents a methodical alternative to long-term dietary dosing of adenine.


Assuntos
Adenina/administração & dosagem , Fibrose/induzido quimicamente , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Administração Oral , Animais , Biomarcadores/urina , Fibrose/metabolismo , Fibrose/urina , Taxa de Filtração Glomerular/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/urina , Rim/metabolismo , Nefropatias/metabolismo , Nefropatias/urina , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Eur J Pharmacol ; 531(1-3): 108-17, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16438960

RESUMO

Previous studies have demonstrated that Fos-like immunoreactivity is increased in spinal dorsal horn neurons in several pain models, and have suggested that Fos-like immunoreactivity could be used as a marker of neurons activated by painful stimulation. In the present study, we evaluated nociceptive behaviors and spinal Fos-like immunoreactivity in a rat skin incision model of post-operative pain. In this model, evoked and non-evoked pain behaviors were observed at least for 2 days after paw surgery, an increased number of Fos-like immunoreactive neurons was observed in the spinal dorsal horn at lumbar levels 4-5 two-hour post-surgery. The number of Fos-like immunoreactive neurons was significantly greater in animals with skin-muscle incision compared to animals with skin-alone incision. Interestingly, spinal Fos-like immunoreactivity was quickly normalized in rats with paw surgery at later time points (8 and 24 h post-surgery), whereas nociceptive behaviors were still observed. Furthermore, at 24 h post-surgery, spinal Fos-like immunoreactivity induced by thermal stimulation (42, 44, 46, 48, 52 degrees C for 15 s) was not significantly different between sham animals and animals with surgery. In both groups, an increase in spinal Fos-like immunoreactive neurons was observed with increasing temperatures, with similar laminar distribution. Finally, systemic morphine reduced post-operative pain and Fos-like immunoreactivity in a naloxone reversible manner, with greater potency and efficacy on behavioral endpoints than on Fos-like immunoreactivity. These results demonstrate a different profile of nociceptive behaviors and spinal Fos-like immunoreactivity in the rat skin incision model, suggesting a limited potential of spinal Fos-like immunoreactivity to study post-surgical pain and its pharmacology.


Assuntos
Dor Pós-Operatória/fisiopatologia , Células do Corno Posterior/química , Proteínas Proto-Oncogênicas c-fos/análise , Medula Espinal/química , Analgésicos Opioides/farmacologia , Animais , Procedimentos Cirúrgicos Dermatológicos , Relação Dose-Resposta a Droga , Membro Posterior/cirurgia , Imuno-Histoquímica , Masculino , Morfina/farmacologia , Músculos/cirurgia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor Pós-Operatória/prevenção & controle , Células do Corno Posterior/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Temperatura , Fatores de Tempo
11.
Eur J Pharmacol ; 788: 1-11, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27288879

RESUMO

Adenosine (ADO) is an important regulatory purine nucleoside that accumulates at sites of inflammation and tissue injury including in diseases associated with renal pathology. Endogenous levels of ADO may be increased by inhibiting the ADO-metabolizing enzyme, ADO kinase (AK). AK inhibitors have demonstrated protection in rodent models of diabetic nephropathy. To further investigate AK inhibition as a potential mechanism for renal protection, A-306989, a potent non-nucleoside AK inhibitor, was examined in both in vitro and in vivo assays of renal injury. A-306989 prevented podocyte damage (disruption of actin cytoskeleton) and increased podocyte survival following puromycin aminonucleoside (PAN) application in both mouse and human conditionally immortalized podocytes. Prophylactic oral administration of A-306989 (1.5, 5 and 15mg/kg) reduced proteinuria in a dose-dependent manner and repressed pro-inflammatory/fibrotic gene up-regulation; A-306989 was also efficacious when administered two days following the PAN-insult. A-306989 (10 and 30mg/kg) also significantly reduced proteinuria and macrophage infiltration in a rat model of glomerulonephritis. Finally, A-306989 (15 and 50mg/kg) reduced the expression levels of pro-inflammatory/fibrotic genes, and reduced macrophage infiltration (50mg/kg), but did not affect the deposition of interstitial collagen in fibrotic kidneys from mice with unilateral ureter obstruction. A-306989 also had beneficial actions on "quality of life" measures including improving body weight loss. Thus, these data indicate that enhancement of endogenous ADO levels by A-306989 can positively modulate renal pathology and mimic some of the previously reported beneficial actions of ADO A2A receptor agonists.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Membrana Basal/diagnóstico por imagem , Citoproteção/efeitos dos fármacos , Rim/citologia , Rim/lesões , Podócitos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Fibrose , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Podócitos/citologia , Podócitos/metabolismo , Puromicina Aminonucleosídeo/toxicidade , Ratos
12.
Pain ; 114(1-2): 195-202, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15733645

RESUMO

Metabotropic glutamate receptors (mGluRs) have previously been shown to play a role in pain transmission during inflammatory or neuropathic pain states. However, the role of mGluR5 in post-operative pain remains to be fully investigated. The present study was conducted to characterize analgesic activity of 2-methyl-6-(phenylethynyl)-pyridine (MPEP) in the skin-incision-induced post-operative pain model in rats. MPEP is a potent and selective mGluR5 antagonist with high affinity (K(i)=6.3+/-0.9 nM) in rat cortex using [(3)H]-MPEP as a radioligand, while not competing with the mGluR1-selective radioligand [(3)H]-R214127 (K(i)>10,000 nM) in rat cerebellum. Post-operative pain was examined 2 h following surgery using weight-bearing (WB) difference between injured and uninjured paws as a measure of non-evoked pain. In this model, MPEP, as morphine, showed dose-dependent effects and full efficacy after systemic administration (ED(50)=15 mg/kg, i.p. for MPEP, ED(50)=1.3 mg/kg, s.c. for morphine). In addition, intrathecal (i.t.) and intracerebroventricular (i.c.v.) MPEP reduced WB difference (ED(50)=65 microg/rat i.t. and ED(50)=200 microg/rat i.c.v.). Interestingly, intraplantar (i.pl.) injection of MPEP either before or after surgery induced a similar reduction in WB difference (ED(50)=90 microg/rat, i.pl.) while contralateral i.pl. MPEP injection did not produce any effect. These results demonstrate that both peripheral and central mGluR5 receptors play a role in nociceptive transmission observed during post-operative pain. In addition, the data suggest that mGluR5 antagonists could offer a new therapeutic approach to the treatment of post-operative pain.


Assuntos
Dor Pós-Operatória/metabolismo , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Relação Dose-Resposta a Droga , Masculino , Morfina/farmacologia , Morfina/uso terapêutico , Dor Pós-Operatória/tratamento farmacológico , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Piridinas/metabolismo , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inibidores
13.
Br J Pharmacol ; 146(2): 180-8, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16041397

RESUMO

P2X3/P2X2/3 receptors have emerged as important components of nociception. However, there is limited information regarding the neurochemical systems that are affected by antagonism of the P2X3/P2X2/3 receptor and that ultimately contribute to the ensuing antinociception. In order to determine if the endogenous opioid system is involved in this antinociception, naloxone was administered just prior to the injection of a selective P2X3/P2X2/3 receptor antagonist, A-317491, in rat models of neuropathic, chemogenic, and inflammatory pain. Naloxone (1-10 mg kg(-1), i.p.), dose-dependently reduced the antinociceptive effects of A-317491 (1-300 micromol kg(-1), s.c.) in the CFA model of thermal hyperalgesia and the formalin model of chemogenic pain (2nd phase), but not in the L5-L6 spinal nerve ligation model of neuropathic allodynia. In comparison experiments, the same doses of naloxone blocked or attenuated the actions of morphine (2 or 8 mg kg(-1), s.c.) in each of these behavioral models. Injection of a peripheral opioid antagonist, naloxone methiodide (10 mg kg(-1), i.p.), did not affect A-317491-induced antinociception in the CFA and formalin assays, suggesting that the opioid component of this antinociception occurred within the CNS. Furthermore, this utilization of the central opioid system could be initiated by antagonism of spinal P2X3/P2X2/3 receptors since the antinociceptive actions of intrathecally delivered A-317491 (30 nmol) in the formalin model were reduced by both intrathecally (10-50 nmol) and systemically (10 mg kg(-1), i.p.) administered naloxone. This utilization of the opioid system was not specific to A-317491 since suramin-, a nonselective P2X receptor antagonist, induced antinociception was also attenuated by naloxone. In in vitro studies, A-317491 (3-100 microM) did not produce any agonist response at delta opioid receptors expressed in NG108-15 cells. A-317491 had been previously shown to be inactive at the kappa and mu opioid receptors. Furthermore, naloxone, at concentrations up to 1 mM, did not compete for [3H] A-317491 binding in 1321N1 cells expressing human P2X3 receptors. Taken together, these results indicate that antagonism of spinal P2X3/P2X2/3 receptors results in an indirect activation of the opioid system to alleviate inflammatory hyperalgesia and chemogenic nociception.


Assuntos
Analgesia , Endorfinas/fisiologia , Inflamação/complicações , Dor/tratamento farmacológico , Dor/etiologia , Doenças do Sistema Nervoso Periférico/complicações , Receptores Purinérgicos P2/fisiologia , Animais , Artrite Experimental/complicações , Artrite Experimental/fisiopatologia , Relação Dose-Resposta a Droga , Formaldeído , Adjuvante de Freund , Inflamação/induzido quimicamente , Injeções Espinhais , Ligadura , Masculino , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor/induzido quimicamente , Fenóis/farmacologia , Compostos Policíclicos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3 , Suramina/farmacologia
14.
Br J Pharmacol ; 140(8): 1381-8, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14623769

RESUMO

We have recently reported that systemic delivery of A-317491, the first non-nucleotide antagonist that has high affinity and selectivity for blocking P2X3 homomeric and P2X2/3 heteromeric channels, is antinociceptive in rat models of chronic inflammatory and neuropathic pain. In an effort to further evaluate the role of P2X3/P2X2/3 receptors in nociceptive transmission, A-317491 was administered either intrathecally or into the hindpaw of a rat in several models of acute and chronic nociception. Intraplantar (ED50=300 nmol) and intrathecal (ED50=30 nmol) injections of A-317491 produced dose-related antinociception in the CFA model of chronic thermal hyperalgesia. Administration of A-317491 by either route was much less effective to reduce thermal hyperalgesia in the carrageenan model of acute inflammatory hyperalgesia. Intrathecal, but not intraplantar, delivery of A-317491 attenuated mechanical allodynia in both the chronic constriction injury and L5-L6 nerve ligation models of neuropathy (ED50=10 nmol for both models). Intrathecal injections of A-317491 did not impede locomotor performance. Both routes of injection were effective in reducing the number of nocifensive events triggered by the injection of formalin into a hindpaw. Nocifensive behaviors were significantly reduced in both the first and second phases of the formalin assay (intrathecal ED50=10 nmol, intraplantar ED50>300 nmol). Nocifensive behaviors induced by the P2X receptor agonist alpha,beta-meATP were also significantly reduced by intraplantar injection of A-317491. These data indicate that both spinal and peripheral P2X3/P2X2/3 receptors have significant contributions to nociception in several animal models of nerve or tissue injury. Intrathecal administration of A-317491 appears to be more effective than intraplantar administration to reduce tactile allodynia following peripheral nerve injury.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Analgésicos não Narcóticos/farmacologia , Dor/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Fenóis/farmacologia , Compostos Policíclicos/farmacologia , Antagonistas do Receptor Purinérgico P2 , Doença Aguda , Analgésicos não Narcóticos/administração & dosagem , Analgésicos não Narcóticos/uso terapêutico , Animais , Carragenina , Doença Crônica , Membro Posterior , Temperatura Alta/efeitos adversos , Inflamação/tratamento farmacológico , Injeções Espinhais , Masculino , Atividade Motora/efeitos dos fármacos , Neuropeptídeos/metabolismo , Dor/etiologia , Medição da Dor , Fenóis/administração & dosagem , Fenóis/uso terapêutico , Compostos Policíclicos/administração & dosagem , Compostos Policíclicos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3
15.
Brain Res ; 1009(1-2): 147-58, 2004 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-15120592

RESUMO

The profile of tetrodotoxin sensitive (TTX-S) and resistant (TTX-R) Na(+) channels and their contribution to action potentials and firing patterns were studied in isolated small dorsal root ganglion (DRG) neurons after L5/L6 spinal nerve ligation (SNL). Total TTX-R Na(+) currents and Na(v) 1.8 mRNA were reduced in injured L5 DRG neurons 14 days after SNL. In contrast, TTX-R Na(+)currents and Na(v) 1.8 mRNA were upregulated in uninjured L4 DRG neurons after SNL. Voltage-dependent inactivation of TTX-R Na(+) channels in these neurons was shifted to hyperpolarized potentials by 4 mV. Two types of neurons were identified in injured L5 DRG neurons after SNL. Type I neurons (57%) had significantly lower threshold but exhibited normal resting membrane potential (RMP) and action potential amplitude. Type II neurons (43%) had significantly smaller action potential amplitude but retained similar RMP and threshold to those from sham rats. None of the injured neurons could generate repetitive firing. In the presence of TTX, only 26% of injured neurons could generate action potentials that had smaller amplitude, higher threshold, and higher rheobase compared with sham rats. In contrast, action potentials and firing patterns in uninjured L4 DRG neurons after SNL, in the presence or absence of TTX, were not affected. These results suggest that TTX-R Na(+) channels play important roles in regulating action potentials and firing patterns in small DRG neurons and that downregulation in injured neurons and upregulation in uninjured neurons confer differential roles in shaping electrogenesis, and perhaps pain transmission, in these neurons.


Assuntos
Potenciais de Ação/fisiologia , Gânglios Espinais/citologia , Neurônios Aferentes/fisiologia , Nervos Espinhais/lesões , Nervos Espinhais/fisiopatologia , Amidinas , Anestésicos Locais/farmacologia , Animais , Células Cultivadas , Estimulação Elétrica , Gânglios Espinais/lesões , Regulação da Expressão Gênica , Ativação do Canal Iônico , Ligadura/métodos , Masculino , Potenciais da Membrana/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.8 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios Aferentes/classificação , Neurônios Aferentes/efeitos dos fármacos , Medição da Dor , Técnicas de Patch-Clamp/métodos , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Nervo Isquiático/fisiologia , Canais de Sódio/genética , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia
16.
Eur J Pharmacol ; 506(2): 107-18, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15588730

RESUMO

Preclinical data, performed in a limited number of pain models, suggest that functional blockade of metabotropic glutamate (mGlu) receptors may be beneficial for pain management. In the present study, effects of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective mGlu5 receptor antagonist, were examined in a wide variety of rodent nociceptive and hypersensitivity models in order to fully characterize the potential analgesic profile of mGlu5 receptor blockade. Effects of 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP), as potent and selective as MPEP at mGlu5/mGlu1 receptors but more selective than MPEP at N-methyl-aspartate (NMDA) receptors, were also evaluated in selected nociceptive and side effect models. MPEP (3-30 mg/kg, i.p.) produced a dose-dependent reversal of thermal and mechanical hyperalgesia following complete Freund's adjuvant (CFA)-induced inflammatory hypersensitivity. Additionally, MPEP (3-30 mg/kg, i.p.) decreased thermal hyperalgesia observed in carrageenan-induced inflammatory hypersensitivity without affecting paw edema, abolished acetic acid-induced writhing activity in mice, and was shown to reduce mechanical allodynia and thermal hyperalgesia observed in a model of post-operative hypersensitivity and formalin-induced spontaneous pain. Furthermore, at 30 mg/kg, i.p., MPEP significantly attenuated mechanical allodynia observed in three neuropathic pain models, i.e. spinal nerve ligation, sciatic nerve constriction and vincristine-induced neuropathic pain. MTEP (3-30 mg/kg, i.p.) also potently reduced CFA-induced thermal hyperalgesia. However, at 100 mg/kg, i.p., MPEP and MTEP produced central nerve system (CNS) side effects as measured by rotarod performance and exploratory locomotor activity. These results suggest a role for mGlu5 receptors in multiple nociceptive modalities, though CNS side effects may be a limiting factor in developing mGlu5 receptor analgesic compounds.


Assuntos
Dor/fisiopatologia , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Ácido Acético , Animais , Carragenina , Sistema Nervoso Central/fisiologia , Constrição Patológica/patologia , Edema/induzido quimicamente , Formaldeído , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Dor/induzido quimicamente , Dor/psicologia , Medição da Dor/efeitos dos fármacos , Dor Pós-Operatória/patologia , Desempenho Psicomotor/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/fisiologia , Nervos Espinhais/patologia , Tiazóis/farmacologia , Vincristina/farmacologia
17.
J Neurosurg ; 101(4): 664-8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15481723

RESUMO

OBJECT: Insulin has been shown to ameliorate cerebral necrosis in global and, more recently, in focal cerebral ischemia. The goal of this study was to determine the relationship between this neuroprotective effect and blood sugar levels in a rat model of focal ischemia. METHODS: Thirty-four rats were subjected to 80 minutes of transient middle cerebral artery occlusion at a mean arterial blood pressure of 60 mm Hg and a temperature of 37 degrees C. Insulin (3.5 IU/kg) was administered 1 hour before (12 rats) and 20 minutes after (12 rats) ischemia; 10 animals served as controls. A quantitative histopathological study conducted after 1 week of survival showed that insulin was not beneficial in reducing the size of the infarction or selective neuronal necrosis in the penumbra when administered before or after ischemia. In addition to infarction, six animals from the insulin-treated groups had bilateral selective neuronal necrosis in the hippocampus or the neocortex. A nonlinear regression analysis in which glucose levels were compared with both cortical necrosis and total infarction yielded a U-shaped curve with a nadir for cerebral necrosis that lay in the 6- to 7-mM blood glucose range. The increased brain damage induced by insulin occurred in animals with very low blood sugar values in the range of 2 to 3 mM. CONCLUSIONS: These results in rats indicate that if insulin is used following ischemia, blood glucose levels should be maintained at approximately 6 to 7 mM. From these data one can infer that hypoglycemia of less than 3 mM should be avoided in situations of focal cerebral ischemia in which insulin is used. Additional animal studies and clinical trials in humans are needed to study the effects of insulin on ischemia.


Assuntos
Glicemia , Isquemia Encefálica/etiologia , Isquemia Encefálica/prevenção & controle , Infarto Cerebral/complicações , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Animais , Isquemia Encefálica/veterinária , Infarto Cerebral/veterinária , Masculino , Ratos , Ratos Wistar
18.
J Pain ; 15(4): 387.e1-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24374196

RESUMO

UNLABELLED: Voltage-gated Ca(2+) channels play an important role in nociceptive transmission. There is significant evidence supporting a role for N-, T- and P/Q-type Ca(2+) channels in chronic pain. Here, we report that A-1264087, a structurally novel state-dependent blocker, inhibits each of these human Ca(2+) channels with similar potency (IC50 = 1-2 µM). A-1264087 was also shown to inhibit the release of the pronociceptive calcitonin gene-related peptide from rat dorsal root ganglion neurons. Oral administration of A-1264087 produces robust antinociceptive efficacy in monoiodoacetate-induced osteoarthritic, complete Freund adjuvant-induced inflammatory, and chronic constrictive injury of sciatic nerve-induced, neuropathic pain models with ED50 values of 3.0, 5.7, and 7.8 mg/kg (95% confidence interval = 2.2-3.5, 3.7-10, and 5.5-12.8 mg/kg), respectively. Further analysis revealed that A-1264087 also suppressed nociceptive-induced p38 and extracellular signal-regulated kinase 1/2 phosphorylation, which are biochemical markers of engagement of pain circuitry in chronic pain states. Additionally, A-1264087 inhibited both spontaneous and evoked neuronal activity in the spinal cord dorsal horn in complete Freund adjuvant-inflamed rats, providing a neurophysiological basis for the observed antihyperalgesia. A-1264087 produced no alteration of body temperature or motor coordination and no learning impairment at therapeutic plasma concentrations. PERSPECTIVE: The present results demonstrate that the neuronal Ca(2+) channel blocker A-1264087 exhibits broad-spectrum efficacy through engagement of nociceptive signaling pathways in preclinical pain models in the absence of effects on psychomotor and cognitive function.


Assuntos
Analgésicos/farmacologia , Compostos Azabicíclicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Leucina/análogos & derivados , Neurônios/metabolismo , Nociceptividade/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Imuno-Histoquímica , Leucina/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Dor/metabolismo , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Medula Espinal/metabolismo
19.
Biochem Pharmacol ; 83(3): 406-18, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22153861

RESUMO

Blockade of voltage-gated Ca²âº channels on sensory nerves attenuates neurotransmitter release and membrane hyperexcitability associated with chronic pain states. Identification of small molecule Ca²âº channel blockers that produce significant antinociception in the absence of deleterious hemodynamic effects has been challenging. In this report, two novel structurally related compounds, A-686085 and A-1048400, were identified that potently block N-type (IC50=0.8 µM and 1.4 µM, respectively) and T-type (IC50=4.6 µM and 1.2 µM, respectively) Ca²âº channels in FLIPR based Ca²âº flux assays. A-686085 also potently blocked L-type Ca²âº channels (EC50=0.6 µM), however, A-1048400 was much less active in blocking this channel (EC50=28 µM). Both compounds dose-dependently reversed tactile allodynia in a model of capsaicin-induced secondary hypersensitivity with similar potencies (EC50=300-365 ng/ml). However, A-686085 produced dose-related decreases in mean arterial pressure at antinociceptive plasma concentrations in the rat, while A-1048400 did not significantly alter hemodynamic function at supra-efficacious plasma concentrations. Electrophysiological studies demonstrated that A-1048400 blocks native N- and T-type Ca²âº currents in rat dorsal root ganglion neurons (IC50=3.0 µM and 1.6 µM, respectively) in a voltage-dependent fashion. In other experimental pain models, A-1048400 dose-dependently attenuated nociceptive, neuropathic and inflammatory pain at doses that did not alter psychomotor or hemodynamic function. The identification of A-1048400 provides further evidence that voltage-dependent inhibition of neuronal Ca²âº channels coupled with pharmacological selectivity vs. L-type Ca²âº channels can provide robust antinociception in the absence of deleterious effects on hemodynamic or psychomotor function.


Assuntos
Analgésicos/administração & dosagem , Bloqueadores dos Canais de Cálcio/administração & dosagem , Hemodinâmica/fisiologia , Neurônios/fisiologia , Medição da Dor , Piperidonas/administração & dosagem , Piperidonas/química , Administração Oral , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Hemodinâmica/efeitos dos fármacos , Humanos , Masculino , Neurônios/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley
20.
Br J Pharmacol ; 162(2): 428-40, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20880025

RESUMO

BACKGROUND AND PURPOSE: Cannabinoid CB2 receptor activation by selective agonists has been shown to produce analgesic effects in preclinical models of inflammatory and neuropathic pain. However, mechanisms underlying CB2-mediated analgesic effects remain largely unknown. The present study was conducted to elucidate the CB2 receptor expression in 'pain relevant' tissues and the potential sites of action of CB2 agonism in rats. EXPERIMENTAL APPROACH: Expression of cannabinoid receptor mRNA was evaluated by quantitative RT-PCR in dorsal root ganglia (DRGs), spinal cords, paws and several brain regions of sham, chronic inflammatory pain (CFA) and neuropathic pain (spinal nerve ligation, SNL) rats. The sites of CB2 mediated antinociception were evaluated in vivo following intra-DRG, intrathecal (i.t.) or intraplantar (i.paw) administration of potent CB2-selective agonists A-836339 and AM1241. KEY RESULTS: CB2 receptor gene expression was significantly up-regulated in DRGs (SNL and CFA), spinal cords (SNL) or paws (CFA) ipsilateral to injury under inflammatory and neuropathic pain conditions. Systemic A-836339 and AM1241 produced dose-dependent efficacy in both inflammatory and neuropathic pain models. Local administration of CB2 agonists also produced significant analgesic effects in SNL (intra-DRG and i.t.) and CFA (intra-DRG) pain models. In contrast to A-836339, i.paw administration of AM-1241 dose-relatedly reversed the CFA-induced thermal hyperalgesia, suggesting that different mechanisms may be contributing to its in vivo properties. CONCLUSIONS AND IMPLICATIONS: These results demonstrate that both DRG and spinal cord are important sites contributing to CB2 receptor-mediated analgesia and that the changes in CB2 receptor expression play a crucial role for the sites of action in regulating pain perception.


Assuntos
Analgésicos/farmacologia , Neuralgia/tratamento farmacológico , Dor/tratamento farmacológico , Receptor CB2 de Canabinoide/metabolismo , Analgesia , Analgésicos/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Neuralgia/induzido quimicamente , Peptídeos Opioides/metabolismo , Dor/metabolismo , Percepção da Dor , RNA Mensageiro/análise , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Receptor CB2 de Canabinoide/agonistas , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Tiazóis/farmacologia , Tiazóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA