RESUMO
Stroke is the leading cause of death and long-term disability worldwide. But treatments are not available to promote functional recovery, and efficient therapies need to be investigated. Stem cell-based therapies hold great promise as potential technologies to restore function in brain disorders. Loss of GABAergic interneurons after stroke may result in sensorimotor defects. Here, by transplanting human brain organoids resembling the MGE domain (human MGE organoids, hMGEOs) derived from human induced pluripotent stem cells (hiPSCs) into the infarcted cortex of stroke mice, we found that grafted hMGEOs survived well and primarily differentiated into GABAergic interneurons and significantly restored the sensorimotor deficits of stroke mice for a long time. Our study offers the feasibility of stem cell replacement therapeutics strategy for stroke.
Assuntos
Células-Tronco Pluripotentes Induzidas , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Células-Tronco Pluripotentes Induzidas/fisiologia , Acidente Vascular Cerebral/terapia , Encéfalo , Interneurônios , Diferenciação CelularRESUMO
Chronic pain patients often have anxiety disorders, and some of them suffer from anxiety even after analgesic administration. In this study, we investigated the role of AMPAR-mediated synaptic transmission in the ventromedial prefrontal cortex (vmPFC) in chronic pain-induced persistent anxiety in mice and explored potential drug targets. Chronic inflammatory pain was induced in mice by bilateral injection of complete Freund's adjuvant (CFA) into the planta of the hind paws; anxiety-like behaviours were assessed with behavioural tests; S-nitrosylation and AMPAR-mediated synaptic transmission were examined using biochemical assays and electrophysiological recordings, respectively. We found that CFA induced persistent upregulation of AMPAR membrane expression and function in the vmPFC of anxious mice but not in the vmPFC of non-anxious mice. The anxious mice exhibited higher S-nitrosylation of stargazin (an AMPAR-interacting protein) in the vmPFC. Inhibition of S-nitrosylation by bilaterally infusing an exogenous stargazin (C302S) mutant into the vmPFC rescued the surface expression of GluA1 and AMPAR-mediated synaptic transmission as well as the anxiety-like behaviours in CFA-injected mice, even after ibuprofen treatment. Moreover, administration of ZL006, a small molecular inhibitor disrupting the interaction of nNOS and PSD-95 (20 mg·kg-1·d-1, for 5 days, i.p.), significantly reduced nitric oxide production and S-nitrosylation of AMPAR-interacting proteins in the vmPFC, resulting in anxiolytic-like effects in anxious mice after ibuprofen treatment. We conclude that S-nitrosylation is necessary for AMPAR trafficking and function in the vmPFC under chronic inflammatory pain-induced persistent anxiety conditions, and nNOS-PSD-95 inhibitors could be potential anxiolytics specific for chronic inflammatory pain-induced persistent anxiety after analgesic treatment.
Assuntos
Ansiedade , Dor Crônica , Córtex Pré-Frontal , Receptores de Glutamato , Animais , Camundongos , Ansiedade/etiologia , Ansiedade/metabolismo , Transtornos de Ansiedade , Dor Crônica/complicações , Dor Crônica/metabolismo , Ibuprofeno , Córtex Pré-Frontal/metabolismo , Transmissão Sináptica , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Inflamação/complicações , Inflamação/metabolismoRESUMO
Stress-induced depression is common worldwide. NAc, a "reward" center, is recently reported to be critical to confer the susceptibility to chronic social defeat stress (CSDS) and the depression-related outcome. However, the underlying molecular mechanisms have not been well characterized. In this study, we induced depression-like behaviors with CSDS and chronic mild stress in male mice to mimic social and environmental factors, respectively, and observed animal behaviors with social interaction test, tail suspension test, and sucrose preference test. To determine the role of neuronal nitric oxide synthase (nNOS) and its product nitric oxide (NO), we used brain region-specifically nNOS overexpression and stereotaxic injection of NO inhibitor or donor. Moreover, the downstream molecular cyclin-dependent kinase 5 (CDK5) was explored by conditional KO and gene mutation. We demonstrate that nNOS-implicated mechanisms in NAc shell (NAcSh), including increased cell number, increased protein expression levels, and increased specific enzyme activity, contribute the susceptibility to social defeat and the following depression-like behaviors. NAcSh nNOS does not directly respond to chronic mild stress but facilitates the depression-like behaviors. The increased NAcSh nNOS expression after CSDS leads to the social avoidance and depression-like behaviors in defeated mice, which is dependent on the nNOS enzyme activity and NO production. Moreover, we identify the downstream signal in NAcSh. S-nitrosylation of CDK5 by NO contributes to enhanced CDK5 activity, leading to depression-related behaviors in susceptible mice. Therefore, NAcSh nNOS mediates susceptibility to social defeat stress and the depression-like behaviors through CDK5.SIGNIFICANCE STATEMENT Stress-induced depression is common worldwide, and chronic exposure to social and psychological stressors is important cause of human depression. Our study conducted with chronic social defeat stress mice models demonstrates that nNOS in NAcSh is crucial to regulate the susceptibility to social defeat stress and the following depression-like behaviors, indicating NAcSh nNOS as the responding molecule to social factors of depression. Moreover, we discover the downstream mechanism of NAcSh nNOS in mediating the susceptibility is NO and S-nitrosylation of CDK5. Thus, NAcSh nNOS mediates susceptibility to social defeat stress through CDK5 is a potential mechanism for depression, which may interpret how the brain transduces social stress exposure into depression.
Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Accumbens/metabolismo , Derrota Social , Estresse Psicológico/metabolismo , Animais , Masculino , CamundongosRESUMO
Exposure therapy based on the extinction of fear memory is first-line treatment for post-traumatic stress disorder (PTSD). However, fear extinction is relatively easy to learn but difficult to remember, extinguished fear often relapses under a number of circumstances. Here, we report that extinction learning-induced association of neuronal nitric oxide synthase (nNOS) with its carboxy-terminal PDZ ligand (CAPON) in the infralimbic (IL) subregion of medial prefrontal cortex negatively regulates extinction memory and dissociating nNOS-CAPON can prevent the return of extinguished fear in mice. Extinction training significantly increases nNOS-CAPON association in the IL. Disruptors of nNOS-CAPON increase extracellular signal-regulated kinase (ERK) phosphorylation and facilitate the retention of extinction memory in an ERK2-dependent manner. More importantly, dissociating nNOS-CAPON after extinction training enhances long-term potentiation and excitatory synaptic transmission, increases spine density in the IL, and prevents spontaneous recovery, renewal and reinstatement of remote fear of mice. Moreover, nNOS-CAPON disruptors do not affect other types of learning. Thus, nNOS-CAPON can serve as a new target for treating PTSD.
Assuntos
Extinção Psicológica , Medo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ligantes , Camundongos , Óxido Nítrico Sintase Tipo I/metabolismoRESUMO
Posttraumatic stress disorder subjects usually show impaired recall of extinction memory, leading to extinguished fear relapses. However, little is known about the neural mechanisms underlying the impaired recall of extinction memory. We show here that the activity of dorsal hippocampus (dHPC) to infralimbic (IL) cortex circuit is essential for the recall of fear extinction memory in male mice. There were functional neural projections from the dHPC to IL. Using optogenetic manipulations, we observed that silencing the activity of dHPC-IL circuit inhibited recall of extinction memory while stimulating the activity of dHPC-IL circuit facilitated recall of extinction memory. "Impairment of extinction consolidation caused by" conditional deletion of extracellular signal-regulated kinase 2 (ERK2) in the IL prevented the dHPC-IL circuit-mediated recall of extinction memory. Moreover, silencing the dHPC-IL circuit abolished the effect of intra-IL microinjection of ERK enhancer on the recall of extinction memory. Together, we identify a dHPC to IL circuit that mediates the recall of extinction memory, and our data suggest that the dysfunction of dHPC-IL circuit and/or impaired extinction consolidation may contribute to extinguished fear relapses.
Assuntos
Extinção Psicológica/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Condicionamento Clássico , Masculino , Camundongos Endogâmicos C57BL , Transtornos de Estresse Pós-Traumáticos/fisiopatologiaRESUMO
The pathogenesis of post-traumatic stress disorder (PTSD) remains largely unclear. A large body of evidence suggests that the abnormal level of serotonin (5-HT) is closely related to the onset of PTSD. Several reports reveal that nitric oxide (NO) affects extracellular 5-HT levels in various brain regions, but no consistent direction of change was found and the underlying mechanisms remain unknown. The most of serotonergic neurons in dorsal raphe nucleus (DRN), a major source of serotonergic input to the forebrain, co-expresses neuronal nitric oxide synthase (nNOS), a synthase derived nitric oxide (NO) in the central nervous system. Here, we found that the excessive expression of nNOS and thereby the high concentration of NO followed by single-prolonged stress (SPS) caused suppression of the activity of DRN 5-HT neurons, inducing PTSD-like phenotype including increased anxiety-like behaviors, enhanced contextual fear memory, and fear generalization. Our study uncovered an important role of DRN nNOS-NO pathway in the pathology of PTSD, which may contribute to new understanding of the molecular mechanism of PTSD.
Assuntos
Comportamento Animal/fisiologia , Núcleo Dorsal da Rafe/fisiopatologia , Óxido Nítrico Sintase Tipo I/metabolismo , Neurônios Serotoninérgicos/metabolismo , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Estresse Psicológico/fisiopatologia , Animais , Ansiedade/fisiopatologia , Ansiedade/psicologia , Núcleo Dorsal da Rafe/enzimologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Óxido Nítrico/metabolismo , Neurônios Serotoninérgicos/citologia , Serotonina/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Estresse Psicológico/psicologiaRESUMO
Contextual fear memory becomes less context-specific over time, a phenomenon referred to as contextual fear generalization. Overgeneralization of contextual fear memory is a core symptom of post-traumatic stress disorder (PTSD), but circuit mechanisms underlying the generalization remain unclear. We show here that neural projections from the anterior cingulate cortex (ACC) to ventral hippocampus (vHPC) mediate contextual fear generalization in male mice. Retrieval of contextual fear in a novel context at a remote time point activated cells in the ACC and vHPC, as indicated by significantly increased C-fos+ cells. Using chemogenetic or photogenetic manipulations, we observed that silencing the activity of ACC or vHPC neurons reduced contextual fear generalization at the remote time point, whereas stimulating the activity of ACC or vHPC neurons facilitated contextual fear generalization at a recent time point. We found that ACC neurons projected to the vHPC unidirectionally, and importantly, silencing the activity of projection fibers from the ACC to vHPC inhibited contextual fear generalization at the remote time point. Together, our findings reveal an ACC to vHPC circuit that controls expression of fear generalization and may offer new strategies to prevent or reverse contextual fear generalization in subjects with anxiety disorders, especially in PTSD.SIGNIFICANCE STATEMENT Overgeneralization of contextual fear memory is a cardinal feature of PTSD, but circuit mechanisms underlying it remain unclear. Our study indicates that neural projections from the anterior cingulate cortex to ventral hippocampus control the expression of contextual fear generalization. Thus, manipulating the circuit may prevent or reverse fear overgeneralization in subjects with PTSD.
Assuntos
Condicionamento Psicológico/fisiologia , Medo/fisiologia , Medo/psicologia , Giro do Cíngulo/fisiologia , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Animais , Giro do Cíngulo/química , Hipocampo/química , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/químicaRESUMO
Environmental enrichment (EE) is a generally accepted strategy to promote stroke recovery and its beneficial effect is positively correlated with neuroplasticity. However, the mechanisms underlying it remain elusive. Histone deacetylase 2 (HDAC2), a negative regulator of neuroplasticity, is up-regulated after stroke. Thus, we hypothesized that HDAC2 may participate in EE-mediated stroke recovery. In this study, focal stroke was induced by photothrombosis in male mice exposing to EE or standard housing (SH) conditions. Recombinant virus vectors, including Ad-HDAC2-Flag, AAV-CAG-EGFP-Cre, LV-shHDAC2, or their controls were microinjected into the motor cortex at 3 days before stroke. Grid-walking and cylinder tasks were conducted to assess motor function. Western blot and immunostaining were used to uncover the mechanisms underlying EE-mediated stroke recovery. We found that EE exposure reversed stroke-induced HDAC2 up-regulation, implicating HDAC2 in EE-mediated functional recovery. Importantly, EE-dependent stroke recovery was counteracted by over-expressing HDAC2, and HDAC2 knockdown promoted functional recovery from stroke to the similar extent as EE exposure. Moreover, the knockdown of HDAC2 epigenetically enhanced expressions of neurotrophins and neuroplasticity-related proteins, with similar effects as EE, and consequently, whole brain and corticospinal tract (CST) rewiring. Together, our findings indicate that HDAC2 is critical for EE-dependent functional restoration. Precisely targeting HDAC2 may mimic EE and serve as a novel therapeutic strategy for stroke recovery.
Assuntos
Meio Ambiente , Histona Desacetilase 2/metabolismo , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/enzimologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologiaRESUMO
Extremely high relapse rate is the dramatic challenge of drug abuse at present. Environmental cues play an important role in relapse of drug abuse. However, the specific mechanism underlying relapse remains unclear. Using morphine conditioned place preference (CPP) model, we show that association of neuronal nitric oxide synthase (nNOS) with postsynaptic density-95 (PSD-95) plays a significant role in morphine priming-induced reinstatement. The nNOS-PSD-95 coupling and c-Fos expression in the medial prefrontal cortex (mPFC) was significantly increased after extinction of morphine CPP. Dissociation of nNOS-PSD-95 in the mPFC by ZL006 inhibited the reinstatement of morphine CPP induced by a priming dose of morphine. Significantly reduced phosphorylation of cAMP-response element binding protein (CREB) in the mPFC was observed in the mice exposed to morphine after the extinction training. Uncoupling nNOS-PSD-95 reversed the morphine-induced CREB dysfunction. Moreover, effects of ZL006 on the reinstatement of morphine CPP and CREB activation depended on nNOS-PSD-95 target. Together, our findings suggest that nNOS-PSD-95 in the mPFC contributes to reinstatement of morphine CPP, possibly through CREB dysfunction, offering a potential target to prevent relapse of drug abuse.
Assuntos
Proteína 4 Homóloga a Disks-Large/metabolismo , Morfina/farmacologia , Entorpecentes/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Extinção Psicológica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacosRESUMO
Background and Purpose- Stroke is a major public health concern worldwide. Although clinical treatments have improved in the acute period after stroke, long-term therapeutics remain limited to physical rehabilitation in the delayed phase. This study is aimed to determine whether nNOS (neuronal NO synthase)-CAPON (carboxy-terminal postsynaptic density-95/discs large/zona occludens-1 ligand of nNOS) interaction may serve as a new therapeutic target in the delayed phase for stroke recovery. Methods- Photothrombotic stroke and transient middle cerebral artery occlusion were induced in mice. Adeno-associated virus (AAV)-cytomegalovirus (CMV)-CAPON-125C-GFP (green fluorescent protein)-3Flag and the other 2 drugs (Tat-CAPON-12C and ZLc-002) were microinjected into the peri-infarct cortex immediately and 4 to 10 days after photothrombotic stroke, respectively. ZLc-002 was also systemically injected 4 to 10 days after transient middle cerebral artery occlusion. Grid-walking task and cylinder task were conducted to assess motor function. Western blotting, immunohistochemistry, Golgi staining, and electrophysiology recordings were performed to uncover the mechanisms. Results- Stroke increased nNOS-CAPON association in the peri-infarct cortex in the delayed period. Inhibiting the ischemia-induced nNOS-CAPON association substantially decreased the number of foot faults in the grid-walking task and forelimb asymmetry in the cylinder task, suggesting the promotion of functional recovery from stroke. Moreover, dissociating nNOS-CAPON significantly facilitated dendritic remodeling and synaptic transmission, indicated by increased dendritic spine density, dendritic branching, and length and miniature excitatory postsynaptic current frequency but did not affect stroke-elicited neuronal loss, infarct size, or cerebral edema, suggesting that nNOS-CAPON interaction may function via regulating structural neuroplasticity, rather than neuroprotection. Furthermore, ZLc-002 reversed the transient middle cerebral artery occlusion-induced impairment of motor function. Conclusions- Our results reveal that nNOS-CAPON coupling can serve as a novel pharmacological target for functional restoration after stroke.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Plasticidade Neuronal/genética , Óxido Nítrico Sintase Tipo I/genética , Acidente Vascular Cerebral/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Edema Encefálico/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Dendritos/patologia , Potenciais Pós-Sinápticos Excitadores , Infarto da Artéria Cerebral Média/genética , Camundongos , Óxido Nítrico Sintase Tipo I/metabolismo , Densidade Pós-Sináptica , Desempenho Psicomotor , Recuperação de Função Fisiológica , Transmissão SinápticaRESUMO
A typical feature of the contextual fear memory is increased fear generalization with time. Though much attention has been given to the neural structures that underlie the long-term consolidation of a contextual fear memory, the molecular mechanisms regulating fear generalization remain unclear. We observed that retrieval of contextual fear in a novel context at a remote time point increased coupling of neuronal nitric oxide synthase (nNOS) with postsynaptic density-95 (PSD-95) and c-Fos expression in the anterior cingulate cortex (ACC). Disrupting nNOS-PSD-95 coupling in the ACC decreased the expression of Histone deacetylase 2 (HDAC2), and inhibited contextual fear generalization at a remote time point. Together, our findings reveal nNOS-PSD-95 interaction in the ACC could be a promising target to prevent or reverse contextual fear generalization.
Assuntos
Medo , Guanilato Quinases/metabolismo , Giro do Cíngulo/fisiologia , Proteínas de Membrana/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Medo/fisiologia , Medo/psicologia , Generalização Psicológica , Masculino , Camundongos Endogâmicos C57BL , Mapas de Interação de ProteínasRESUMO
Mechanisms underlying functional recovery after stroke are little known, and effective drug intervention during the delayed stage is desirable. One potential drug target, the protein-protein interaction between neuronal nitric oxide synthase (nNOS) and postsynaptic density protein 95 (PSD-95), is critical to acute ischaemic damage and neurogenesis. We show that nNOS-PSD-95 dissociation induced by microinjection of a recombinant fusion protein, Tat-nNOS-N1-133 , or systemic administration of a small-molecule, ZL006, from day 4 to day 10 after photothrombotic ischaemia in mice reduced excessive tonic inhibition in the peri-infarct cortex and ameliorated motor functional outcome. We also demonstrated improved neuroplasticity including increased dendrite spine density and synaptogenesis after reducing excessive tonic inhibition by nNOS-PSD-95 dissociation. Levels of gamma-aminobutyric acid (GABA) and GABA transporter-3/4 (GAT-3/4) are increased in the reactive astrocytes in the peri-infarct cortex. The GAT-3/4-selective antagonist SNAP-5114 reduced tonic inhibition and promoted function recovery, suggesting that increased tonic inhibition in the peri-infarct cortex was due to GABA release from reversed GAT-3/4 in reactive astrocytes. Treatments with Tat-nNOS-N1-133 or ZL006 after ischaemia inhibited astrocyte activation and GABA production, prevented the reversal of GAT-3/4, and consequently decreased excessive tonic inhibition and ameliorated functional outcome. The underlying molecular mechanisms were associated with epigenetic inhibition of glutamic acid decarboxylase 67 and monoamine oxidase B expression through reduced NO production. The nNOS-PSD-95 interaction is thus a potential target for functional restoration after stroke and ZL006, a small molecule inhibitor of this interaction, is a promising pharmacological lead compound. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Ácidos Aminossalicílicos/farmacologia , Astrócitos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Benzilaminas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Proteína 4 Homóloga a Disks-Large/metabolismo , Atividade Motora/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Anisóis/farmacologia , Astrócitos/metabolismo , Isquemia Encefálica/enzimologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/psicologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Glutamato Descarboxilase/metabolismo , Monoaminoxidase/metabolismo , Córtex Motor/irrigação sanguínea , Córtex Motor/enzimologia , Córtex Motor/fisiopatologia , Inibição Neural/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Ácidos Nipecóticos/farmacologia , Óxido Nítrico/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/farmacologia , Recuperação de Função Fisiológica , Via SecretóriaRESUMO
Narrow therapeutic window limits treatments with thrombolysis and neuroprotection for most stroke patients. Widening therapeutic window remains a critical challenge. Understanding the key mechanisms underlying the pathophysiological events in the peri-infarct area where secondary injury coexists with neuroplasticity over days to weeks may offer an opportunity for expanding the therapeutic window. Here we show that ischemia-induced histone deacetylase 2 (HDAC2) upregulation from 5 to 7 d after stroke plays a crucial role. In this window phase, suppressing HDAC2 in the peri-infarct cortex of rodents by HDAC inhibitors, knockdown or knock-out of Hdac2 promoted recovery of motor function from stroke via epigenetically enhancing cells survival and neuroplasticity of surviving neurons as well as reducing neuroinflammation, whereas overexpressing HDAC2 worsened stroke-induced functional impairment of both WT and Hdac2 conditional knock-out mice. More importantly, inhibiting other isoforms of HDACs had no effect. Thus, the intervention by precisely targeting HDAC2 in this window phase is a novel strategy for the functional recovery of stroke survivors.SIGNIFICANCE STATEMENT Narrow time window phase impedes current therapies for stroke patients. Understanding the key mechanisms underlying secondary injury may open a new window for pharmacological interventions to promote recovery from stroke. Our study indicates that ischemia-induced histone deacetylase 2 upregulation from 5 to 7 d after stroke mediates the secondary functional loss by reducing survival and neuroplasticity of peri-infarct neurons as well as augmenting neuroinflammation. Thus, precisely targeting histone deacetylase 2 in the window phase provides a novel therapeutic strategy for stroke recovery.
Assuntos
Encéfalo/fisiopatologia , Histona Desacetilase 2/metabolismo , Neurônios/enzimologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Terapia de Alvo Molecular , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Regulação para CimaRESUMO
Anxiety disorders are associated with a high social burden worldwide. Recently, increasing evidence suggests that nuclear factor kappa B (NF-κB) has significant implications for psychiatric diseases, including anxiety and depressive disorders. However, the molecular mechanisms underlying the role of NF-κB in stress-induced anxiety behaviors are poorly understood. In this study, we show that chronic mild stress (CMS) and glucocorticoids dramatically increased the expression of NF-κB subunits p50 and p65, phosphorylation and acetylation of p65, and the level of nuclear p65 in vivo and in vitro, implicating activation of NF-κB signaling in chronic stress-induced pathological processes. Using the novelty-suppressed feeding (NSF) and elevated-plus maze (EPM) tests, we found that treatment with pyrrolidine dithiocarbamate (PDTC; intra-hippocampal infusion), an inhibitor of NF-κB, rescued the CMS- or glucocorticoid-induced anxiogenic behaviors in mice. Microinjection of PDTC into the hippocampus reversed CMS-induced up-regulation of neuronal nitric oxide synthase (nNOS), carboxy-terminal PDZ ligand of nNOS (CAPON), and dexamethasone-induced ras protein 1 (Dexras1) and dendritic spine loss of dentate gyrus (DG) granule cells. Moreover, over-expression of CAPON by infusing LV-CAPON-L-GFP into the hippocampus induced nNOS-Dexras1 interaction and anxiety-like behaviors, and inhibition of NF-κB by PDTC reduced the LV-CAPON-L-GFP-induced increases in nNOS-Dexras1 complex and anxiogenic-like effects in mice. These findings indicate that hippocampal NF-κB mediates anxiogenic behaviors, probably via regulating the association of nNOS-CAPON-Dexras1, and uncover a novel approach to the treatment of anxiety disorders.
Assuntos
Ansiedade/etiologia , Ansiedade/patologia , Hipocampo/citologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Domínios PDZ/fisiologia , Estresse Psicológico/complicações , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Corticosterona/metabolismo , Corticosterona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Proteínas Associadas aos Microtúbulos/metabolismo , Pirrolidinas/farmacologia , Transdução de Sinais/fisiologia , Estresse Psicológico/patologia , Tiocarbamatos/farmacologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Proteínas ras/metabolismoRESUMO
Fear- and anxiety-related psychiatric disorders have been one of the major chronic diseases afflicting patients for decades, and new compounds for treating such disorders remain to be developed. (+)-Borneol, a bicyclic monoterpene found in several species of Artemisia and Dipterocarpaceae, is widely used for anxiety, pain and anesthesia in Chinese medicine. Meanwhile, it can potentiate GABA (γ-aminobutyric acid) activity directly in recombinant GABAA receptors. The present study was to investigate the effects of (+)-Borneol on both contextual and cued fear recall. Interestingly, microinjection of (+)-Borneol into the dorsal hippocampus inhibited 24 h and 7 d contextual fear, whereas its infusion into ventral hippocampus only reduced 24 h cued fear responses. Moreover, microinjection of (+)-Borneol into dorsal but not ventral hippocampus suppressed anxiety-like behaviors in the open field test, light/dark exploration and the elevated plus maze test. As selective GABAA receptor antagonist bicuculline reversed the effect of (+)-Borneol on contextual fear paradigm and the drug potentiated GABA-evoked currents in acute hippocampus slices, modulation of the GABAergic neurotransmission may explain the effects of (+)-Borneol. Our findings suggest that (+)-Borneol can serve as a new therapeutic in fear- and anxiety-related disorders.
Assuntos
Ansiedade/tratamento farmacológico , Canfanos/farmacologia , Medo/efeitos dos fármacos , Animais , Ansiedade/fisiopatologia , Ansiedade/psicologia , Condicionamento Psicológico/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medo/fisiologia , Agonistas de Receptores de GABA-A/farmacologia , Hipocampo/anatomia & histologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plantas Medicinais , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismoRESUMO
Granule cells in the dentate gyrus regenerate constantly in adult hippocampus and then integrate into neural circuits in the hippocampus thereby providing the neural basis for learning and memory. Promoting the neurogenesis in the hippocampus facilitates learning and memory such as spatial learning, object identification, and extinction learning. The interaction between neuronal nitric oxide synthase (nNOS) and postsynaptic density protein-95 (PSD-95) is reported to negatively regulate neurogenesis in brain, so we hypothesized that disrupting this interaction might facilitate the neurogenesis in the dentate gyrus (DG) and thus enhance the extinction memory retrieval of fear learning. We found that uncoupling the nNOS-PSD-95 complex in remote contextual fear condition promoted both neuronal proliferation and survival in the DG, contributing to an enhanced retrieval of the extinction memory. Moreover, the nNOS-PSD-95 uncoupling-induced neurogenesis may be mediated by the extracellular signal-regulated kinase (ERK) as the phosphorylation level of ERK1/2 was increased after uncoupling. These findings suggest that the nNOS-PSD-95 complex may serve as a novel target for the treatment of post-traumatic stress disorder (PTSD).
Assuntos
Giro Denteado/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Rememoração Mental/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/fisiologiaRESUMO
New strategies must be developed to resolve the problems of stroke treatment. In recent years, stem cell-based therapy after stroke has come into the public and academic lens. Previously we have shown that uncoupling neuronal nitric oxide synthase (nNOS) from the postsynaptic density protein-95 (PSD-95) by ZL006, a small molecular compound, can ameliorate ischemic damage and promote neuronal differentiation of endogenous neural stem cells (NSCs) in focal cerebral ischemic male rats. In this study, we transplanted exogenous NSCs into the ipsilateral hemisphere of male rats in combination with ZL006 treatment after ischemic stroke. We show that ZL006 treatment facilitates the migration of transplanted NSCs into the ischemia-injured area and promotes neuronal differentiation of these cells, which is not due to a direct effect of ZL006 on exogenous NSCs but is associated with increased phosphorylation of cAMP response element-binding protein (CREB) in neurons and favorable microenvironment. Moreover, improved functional outcome in the ZL006-treated group was also found. Taken together, our data indicate that ZL006, uncoupling nNOS-PSD-95 in neurons, positively regulates the fate of transplanted NSCs and benefits the functional outcome after stroke in male rats.
Assuntos
Ácidos Aminossalicílicos/farmacologia , Benzilaminas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/patologia , Animais , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND Recent studies demonstrated that polymorphisms in the PDE4D gene were associated with several processes involved in the occurrence of ischemic stroke (IS). The association between specific PDE4D single-nucleotide polymorphism 56 (SNP56) and IS risk was initially identified via genome-wide association studies (GWAS), although the GWAS in different populations produced inconclusive results. Thus, we performed a meta-analysis to better explain the association between PDE4D SNP56 and IS risk. MATERIAL AND METHODS A literature search was conducted using PubMed, Embase, and Web of Science up to June 1, 2015. A fixed-effects or random-effects model was used to calculate the pooled odds ratios (ORs) based on the results from the heterogeneity tests. RESULTS Finally, we performed a meta-analysis of 15 studies, involving 8731 IS patients and 10,756 controls. The results showed nonsignificant association between PDE4D SNP56 and IS risk (T vs. A: OR=1.01, 95%CI=0.88-1.15, P=0.90). Similarly, in the subgroup analysis by ethnicity, no significant association was observed in Asian (T vs. A: OR=1.08, 95%CI=0.80-1.44, P=0.62) or European (T vs. A: OR=0.96, 95%CI=0.86-1.08, P=0.54) population. Moreover, funnel plots and Egger regression testing showed no evidence of publication bias. CONCLUSIONS In summary, current evidence suggested that PDE4D SNP56 might not be associated with an increased susceptibility to IS. However, this conclusion needs further validation by well-designed studies with large sample sizes.
Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Acidente Vascular Cerebral/genética , Alelos , Povo Asiático/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Frequência do Gene , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Acidente Vascular Cerebral/metabolismo , População Branca/genéticaRESUMO
BACKGROUND Recent studies demonstrated that polymorphisms in the PDE4D gene were associated with several processes involved in the occurrence of ischemic stroke (IS). The association between specific PDE4D single-nucleotide polymorphism 56 (SNP56) and IS risk was initially identified via genome-wide association studies (GWAS), although the GWAS in different populations produced inconclusive results. Thus, we performed a meta-analysis to better explain the association between PDE4D SNP56 and IS risk. MATERIAL AND METHODS A literature search was conducted using PubMed, Embase, and Web of Science up to June 1, 2015. A fixed-effects or random-effects model was used to calculate the pooled odds ratios (ORs) based on the results from the heterogeneity tests. RESULTS Finally, we performed a meta-analysis of 15 studies, involving 8731 IS patients and 10,756 controls. The results showed nonsignificant association between PDE4D SNP56 and IS risk (T vs. A: OR=1.01, 95%CI=0.88-1.15, P=0.90). Similarly, in the subgroup analysis by ethnicity, no significant association was observed in Asian (T vs. A: OR=1.08, 95%CI=0.80-1.44, P=0.62) or European (T vs. A: OR=0.96, 95%CI=0.86-1.08, P=0.54) population. Moreover, funnel plots and Egger regression testing showed no evidence of publication bias. CONCLUSIONS In summary, current evidence suggested that PDE4D SNP56 might not be associated with an increased susceptibility to IS. However, this conclusion needs further validation by well-designed studies with large sample sizes.
RESUMO
Stroke is a major public health concern. The lack of effective therapies heightens the need for new therapeutic targets. Mammalian brain has the ability to rewire itself to restore lost functionalities. Promoting regenerative repair, including neurogenesis and dendritic remodeling, may offer a new therapeutic strategy for the treatment of stroke. Here, we report that interaction of neuronal nitric oxide synthase (nNOS) with the protein postsynaptic density-95 (PSD-95) negatively controls regenerative repair after stroke in rats. Dissociating nNOS-PSD-95 coupling in neurons promotes neuronal differentiation of neural stem cells (NSCs), facilitates the migration of newborn cells into the injured area, and enhances neurite growth of newborn neurons and dendritic spine formation of mature neurons in the ischemic brain of rats. More importantly, blocking nNOS-PSD-95 binding during the recovery stage improves stroke outcome via the promotion of regenerative repair in rats. Histone deacetylase 2 in NSCs may mediate the role of nNOS-PSD-95 association. Thus, nNOS-PSD-95 can serve as a target for regenerative repair after stroke.