Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 168, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164758

RESUMO

BACKGROUND: Information transmission between primary tumor cells and immunocytes or stromal cells in distal organs is a critical factor in the formation of pre-metastatic niche (PMN). Understanding this mechanism is essential for developing effective therapeutic strategy against tumor metastasis. Our study aims to prove the hypothesis that circ-0034880-enriched tumor-derived extracellular vesicles (TEVs) mediate the formation of PMN and colorectal cancer liver metastasis (CRLM), and targeting circ-0034880-enriched TEVs might be an effective therapeutic strategy against PMN formation and CRLM. METHODS: We utilized qPCR and FISH to measure circRNAs expression levels in human CRC plasma, primary CRC tissues, and liver metastatic tissues. Additionally, we employed immunofluorescence, RNA sequencing, and in vivo experiments to assess the effect mechanism of circ-0034880-enriched TEVs on PMN formation and CRC metastasis. DARTS, CETSA and computational docking modeling were applied to explore the pharmacological effects of Ginsenoside Rb1 in impeding PMN formation. RESULTS: We found that circ-0034880 was highly enriched in plasma extracellular vesicles (EVs) derived from CRC patients and closely associated with CRLM. Functionally, circ-0034880-enriched TEVs entered the liver tissues and were absorbed by macrophages in the liver through bloodstream. Mechanically, TEVs-released circ-0034880 enhanced the activation of SPP1highCD206+ pro-tumor macrophages, reshaping the metastasis-supportive host stromal microenvironment and promoting overt metastasis. Importantly, our mechanistic findings led us to discover that the natural product Ginsenoside Rb1 impeded the activation of SPP1highCD206+ pro-tumor macrophages by reducing circ-0034880 biogenesis, thereby suppressing PMN formation and inhibiting CRLM. CONCLUSIONS: Circ-0034880-enriched TEVs facilitate strong interaction between primary tumor cells and SPP1highCD206+ pro-tumor macrophages, promoting PMN formation and CRLM. These findings suggest the potential of using Ginsenoside Rb1 as an alternative therapeutic agent to reshape PMN formation and prevent CRLM.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Neoplasias Hepáticas , Osteopontina , RNA Circular , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Vesículas Extracelulares/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Animais , RNA Circular/genética , Osteopontina/metabolismo , Osteopontina/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Masculino , Feminino , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
Langenbecks Arch Surg ; 409(1): 138, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676783

RESUMO

PURPOSE: Treating an infiltration of the recurrent laryngeal nerve (RLN) by thyroid carcinoma remains a subject of ongoing debate. Therefore, this study aims to provide a novel strategy for intraoperative phenosurgical management of RLN infiltrated by thyroid carcinoma. METHODS: Forty-two patients with thyroid carcinoma infiltrating the RLN were recruited for this study and divided into three groups. Group A comprised six individuals with medullary thyroid cancer who underwent RLN resection and arytenoid adduction. Group B consisted of 29 differentiated thyroid cancer (DTC)patients who underwent RLN resection and ansa cervicalis (ACN)-to-RLN anastomosis. Group C included seven patients whose RLN was preserved. RESULTS: The videostroboscopic analysis and voice assessment collectively indicated substantial improvements in voice quality for patients in Groups A and B one year post-surgery. Additionally, the shaving technique maintained a normal or near-normal voice in Group C one year post-surgery. CONCLUSION: The new intraoperative phonosurgical strategy is as follows: Resection of the affected RLN and arytenoid adduction is required in cases of medullary or anaplastic carcinoma, regardless of preoperative RLN function. Suppose RLN is found infiltrated by well-differentiated thyroid cancer (WDTC) during surgery, and the RLN is preoperatively paralyzed, we recommend performing resection the involved RLN and ACN-to-RLN anastomosis immediately during surgery. If vocal folds exhibit normal mobility preoperatively, the MACIS scoring system is used to assess patient risk stratification. When the MACIS score > 6.99, resection of the involved RLN and immediate ACN-to-RLN anastomosis were performed. RLN preservation was limited to patients with MACIS scores ≤ 6.99.


Assuntos
Nervo Laríngeo Recorrente , Neoplasias da Glândula Tireoide , Tireoidectomia , Humanos , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Nervo Laríngeo Recorrente/cirurgia , Tireoidectomia/métodos , Paralisia das Pregas Vocais/etiologia , Paralisia das Pregas Vocais/cirurgia , Idoso , Qualidade da Voz , Invasividade Neoplásica/patologia , Resultado do Tratamento
3.
J Med Virol ; 95(2): e28542, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36727647

RESUMO

The ongoing pandemic with the emergence of immune evasion potential and, particularly, the current omicron subvariants intensified the situation further. Although vaccines are available, the immune evasion capabilities of the recent variants demand further efficient therapeutic choices to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Hence, considering the necessity of the small molecule inhibitor, we target the main protease (3CLpro), which is an appealing target for the development of antiviral drugs against SARS-CoV-2. High-throughput molecular in silico screening of South African natural compounds database reported Isojacareubin and Glabranin as the potential inhibitors for the main protease. The calculated docking scores were reported to be -8.47 and -8.03 kcal/mol, respectively. Moreover, the structural dynamic assessment reported that Isojacareubin in complex with 3CLpro exhibit a more stable dynamic behavior than Glabranin. Inhibition assay indicated that Isojacareubin could inhibit SARS-CoV-2 3CLpro in a time- and dose-dependent manner, with half maximal inhibitory concentration values of 16.00 ± 1.35 µM (60 min incubation). Next, the covalent binding sites of Isojacareubin on SARS-CoV-2 3CLpro was identified by biomass spectrometry, which reported that Isojacareubin can covalently bind to thiols or Cysteine through Michael addition. To evaluate the inactivation potency of Isojacareubin, the inactivation kinetics was further investigated. The inactivation kinetic curves were plotted according to various concentrations with gradient-ascending incubation times. The KI value of Isojacareubin was determined as 30.71 µM, whereas the Kinact value was calculated as 0.054 min-1 . These results suggest that Isojacareubin is a covalent inhibitor of SARS-CoV-2 3CLpro .


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteases 3C de Coronavírus , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Antivirais/farmacologia
4.
J Med Virol ; 95(11): e29208, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37947293

RESUMO

The main proteases (Mpro ) are highly conserved cysteine-rich proteins that can be covalently modified by numerous natural and synthetic compounds. Herein, we constructed an integrative approach to efficiently discover covalent inhibitors of Mpro from complex herbal matrices. This work begins with biological screening of 60 clinically used antiviral herbal medicines, among which Lonicera japonica Flos (LJF) demonstrated the strongest anti-Mpro effect (IC50 = 37.82 µg/mL). Mass spectrometry (MS)-based chemical analysis and chemoproteomic profiling revealed that LJF extract contains at least 50 constituents, of which 22 exhibited the capability to covalently modify Mpro . We subsequently verified the anti-Mpro effects of these covalent binders. Gallic acid and quercetin were found to potently inhibit severe acute respiratory syndrome coronavirus 2 Mpro in dose- and time- dependent manners, with the IC50 values below 10 µM. The inactivation kinetics, binding affinity and binding mode of gallic acid and quercetin were further characterized by fluorescence resonance energy transfer, surface plasmon resonance, and covalent docking simulations. Overall, this study established a practical approach for efficiently discovering the covalent inhibitors of Mpro from herbal medicines by integrating target-based high-throughput screening and MS-based assays, which would greatly facilitate the discovery of key antiviral constituents from medicinal plants.


Assuntos
COVID-19 , Plantas Medicinais , Humanos , SARS-CoV-2 , Ensaios de Triagem em Larga Escala , Quercetina/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Antivirais/química , Ácido Gálico/farmacologia , Simulação de Acoplamento Molecular
5.
Opt Express ; 31(2): 2967-2976, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785298

RESUMO

The characterization and manipulation of polarization state at single photon level are of great importance in research fields such as quantum information processing and quantum key distribution, where photons are normally delivered using single mode optical fibers. To date, the demonstrated polarimetry measurement techniques based on a superconducting nanowire single photon detector (SNSPD) require the SNSPD to be either highly sensitive or highly insensitive to the photon's polarization state, therefore placing an unavoidable challenge on the SNSPD's design and fabrication processes. In this article, we present the development of an alternative polarimetry measurement technique, of which the stringent requirement on the SNSPD's polarization sensitivity is removed. We validate the proposed technique by a rigorous theoretical analysis and comparisons of the experimental results obtained using a fiber-coupled SNSPD with a polarization extinction ratio of ∼2 to that obtained using other well-established known methods. Based on the full Stokes data measured by the proposed technique, we also demonstrate that at the single photon level (∼ -100 dBm), the polarization state of the photon delivered to the superconducting nanowire facet plane can be controlled at will using a further developed algorithm. Note that other than the fiber-coupled SNSPD, the only component involved is a quarter-wave plate (no external polarizer is necessary), which when aligned well has a paid insertion loss less than 0.5 dB.

6.
Analyst ; 148(10): 2225-2236, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37092796

RESUMO

Obesity, now widespread all over the world, is frequently associated with several chronic diseases. Human pancreatic lipase (hPL) is a crucial digestive enzyme responsible for the digestion of dietary lipids in humans, and the inhibition of hPL is effective in reducing triglyceride intake and thus preventing and treating obesity. In this work, a practical sequential screening strategy was developed to construct a highly selective near-infrared fluorogenic substrate 7-STCFC for hPL. Under physiological conditions, 7-STCFC can be rapidly hydrolyzed by hPL to form 7-HTCFC, which triggers 254-fold NIR signal enhancement at 670 nm. 7-STCFC was successfully applied for the sensing and imaging of endogenous PL in living systems (including living cells, tissues and organs) with low cytotoxicity and high imaging resolution. Moreover, a high-throughput screening platform was established using 7-STCFC, and the inhibitory effects of 94 kinds of herbs toward hPL were evaluated. Among them, Pu-erh tea stood out with outstanding hPL inhibitory effects, and the inhibitory ingredients and involved inhibitory mechanism were further revealed, which strongly facilitates the discovery of novel anti-obesity agents targeting hPL. Collectively, these findings suggested that our strategy was practical to develop an isoform-specific fluorogenic substrate for a target enzyme, and 7-STCFC was a powerful tool for monitoring PL activity in complex biological systems with value for exploring physiological functions and rapid screening of inhibitors.


Assuntos
Corantes Fluorescentes , Pâncreas , Humanos , Lipase , Obesidade , Triglicerídeos
7.
Bioorg Med Chem Lett ; 95: 129435, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549850

RESUMO

Human cytochrome P450 3A4 (hCYP3A4), one of the most important drug-metabolizing enzymes, catalyze the metabolic clearance of ∼50% therapeutic drugs. CYP3A4 inhibitors have been used for improving the in vivo efficacy of hCYP3A4-substrate drugs. However, most of existing hCYP3A4 inhibitors may trigger serious adverse effects or undesirable effects on endogenous metabolism. This study aimed to discover potent and orally active hCYP3A4 inhibitors from chalcone derivatives and to test their anti-hCYP3A4 effects both in vitro and in vivo. Following three rounds of screening and structural optimization, the isoquinoline chalcones were found with excellently anti-hCYP3A4 effects. SAR studies showed that introducing an isoquinoline ring on the A-ring significantly enhanced anti-CYP3A4 effect, generating A10 (IC50 = 102.10 nM) as a promising lead compound. The 2nd round of SAR studies showed that introducing a substituent group at the para position of the carbonyl group on B-ring strongly improved the anti-CYP3A4 effect. As a result, C6 was identified as the most potent hCYP3A4 inhibitor (IC50 = 43.93 nM) in human liver microsomes (HLMs). C6 also displayed potent anti-hCYP3A4 effect in living cells (IC50 = 153.00 nM), which was superior to the positive inhibitor ketoconazole (IC50 = 251.00 nM). Mechanistic studies revealed that C6 could potently inhibit CYP3A4-catalyzed N-ethyl-1,8-naphthalimide (NEN) hydroxylation in a competitive manner (Ki = 30.00 nM). Moreover, C6 exhibited suitable metabolic stability in HLMs and showed good safety profiles in mice. In vivo tests demonstrated that C6 (100 mg/kg, orally administration) significantly increased the AUC(0-inf) of midazolam by 3.63-fold, and strongly prolonged its half-life by 1.66-fold compared with the vehicle group in mice. Collectively, our findings revealed the SARs of chalcone derivatives as hCYP3A4 inhibitors and offered several potent chalcone-type hCYP3A4 inhibitors, while C6 could serve as a good lead compound for developing novel, orally active CYP3A4 inhibitors with improved druglikeness properties.

8.
Bioorg Chem ; 130: 106264, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395603

RESUMO

Although the effective drugs or vaccines have been developed to prevent the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), their efficacy may be limited for the viral evolution and immune escape. Thus, it is urgently needed to develop the novel broad-spectrum antiviral agents to control the coronavirus disease 2019 (COVID-19) global pandemic. The 3C-like protease (3CLpro) is a highly conserved cysteine proteinase that plays a pivotal role in processing the viral polyprotein to create non-structural proteins (nsps) for replication and transcription of SARS-CoV-2, making it an attractive antiviral target for developing broad-spectrum antiviral agents against SARS-CoV-2. In this study, we identified Thonzonium bromide as an inhibitor of SARS-CoV-2 3CLpro with an IC50 value of 2.04 ± 0.25 µM by fluorescence resonance energy transfer (FRET)-based enzymatic inhibition assay from the FDA-approved drug library. Next, we determined the inhibitory activity of Thonzonium bromide analogues against SARS-CoV-2 3CLpro and analyzed their structure-activity relationship (SAR). Interestingly, Thonzonium bromide showed better inhibitory activity than other analogues. Further fluorescence quenching assay, enzyme kinetics analysis, circular dichroism (CD) analysis and molecular docking studies showed that Thonzonium bromide inhibited SARS-CoV-2 3CLpro activity by firmly occupying the catalytic site and inducing conformational changes of the protease. In addition, Thonzonium bromide didn't exhibit inhibitory activity on human chymotrypsin C (CTRC) and Dipeptidyl peptidase IV (DPP-IV), indicating that it had a certain selectivity. Finally, we measured the inhibitory activities of Thonzonium bromide against 3CLpro of SARS-CoV, MERS-CoV and HCoV-229E and found that it had the broad-spectrum inhibitory activity against the proteases of human coronaviruses. These results provide the possible mechanism of action of Thonzonium bromide, highlighting its potential efficacy against multiple human coronaviruses.


Assuntos
Tratamento Farmacológico da COVID-19 , Pirimidinas , Compostos de Amônio Quaternário , SARS-CoV-2 , Inibidores de Protease Viral , Humanos , Antivirais/farmacologia , Endopeptidases , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/enzimologia , SARS-CoV-2/metabolismo , Compostos de Amônio Quaternário/farmacologia , Pirimidinas/farmacologia , Inibidores de Protease Viral/farmacologia
9.
Anal Chem ; 94(43): 15057-15066, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36262049

RESUMO

Autophagy is a core recycling process for homeostasis, with its dysfunction associated with tumorigenesis and various diseases. Yet, its subtle intracellular details are covered due to the limited resolution of conventional microscopies. The major challenge for modern super-resolution microscopy deployment is the lack of a practical labeling system, which could provide robust fluorescence with fidelity in the context of the dynamic autophagy microenvironment. Herein, a representative autophagy marker LC3 protein is selected to develop two hybrid self-labeling systems with tetramethylrhodamine (TMR) fluorophores through SNAP/Halo-tag technologies. A systematic investigation indicated that the match of the LC3-Halo and TMR ligand remarkably outperforms that of LC3-SNAP, as the former Halo system exhibited more robust single-molecule brightness (440 vs 247), total photon numbers (45600 vs 13500), and dwell time of the initial bright state (0.82 vs 0.40 s) than the latter. With the aid of this desirable Halo system, for the first time, live-cell ferritinophagy is monitored with a spatial resolution of ∼50 nm, which disclosed reduced sizes of autophagosomes (∼650 nm, ferritinophagy) than those in nonselective (∼840 nm, mammalian target of rapamycin (mTOR)) and selective autophagy (∼900 nm, mitophagy).


Assuntos
Autofagia , Corantes Fluorescentes , Ligantes , Mitofagia , Proteínas
10.
Drug Metab Dispos ; 50(5): 552-565, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35241486

RESUMO

Bilirubin-related adverse drug reactions (ADRs) or malady (e.g., jaundice) induced by some herbs rich in certain flavonoids have been widely reported. However, the causes and mechanisms of the ADRs are not well understood. The aim of this paper was to explore the mechanism of Shuang-huang-lian (SHL) injections and its major constituents-induced jaundice via inhibiting human UDP-glucuronosyltransferases1A1 (hUGT1A1)-mediated bilirubin glucuronidation. The inhibitory effects of SHL and its major constituents in the herbal medicine, including baicalein (BAI), baicalin (BA), and hyperoside (HYP), on bilirubin glucuroBBREVInidation were investigated. This study indicated that the average formation rates of bilirubin glucuronides [i.e., mono-glucuronide 1 (BMG1), BMG2, and bilirubin diglucuronide] displayed significant differences (P < 0.05). Specifically, the formation of BMGs was favored regardless of whether an inhibitor was absent or present. SHL, BAI, BA, and HYP dose-dependently inhibit bilirubin glucuronidation, showing the IC50 values against total bilirubin glucuronidation were in the range of (7.69 ± 0.94)-(37.09 ± 2.03) µg/ml, (4.51 ± 0.27)-(20.84 ± 1.99) µM, (22.36 ± 5.74)-(41.35 ± 2.40) µM, and (15.16 ± 1.12)-(42.80 ± 2.63) µM for SHL, BAI, BA, and HYP, respectively. Both inhibition kinetics assays and molecular docking simulations suggested that SHL, BAI, BA, and HYP significantly inhibited hUGT1A1-mediated bilirubin glucuronidation via a mixed-type inhibition. Collectively, some naturally occurring flavonoids (BAI, BA, and HYP) in SHL have been identified as the inhibitors against hUGT1A1-mediated bilirubin glucuronidation, which well explains the bilirubin-related ADRs or malady triggered by SHL in clinical settings. SIGNIFICANCE STATEMENT: Herbal products and their components (e.g., flavonoids), which been widely used across the entire world, may cause liver injury. As a commonly used herbal products rich in flavonoids, SHL injections easily lead to symptoms of liver injury (e.g., jaundice) owing to significant inhibition of hUGT1A1-mediated bilirubin glucuronidation by its flavonoid components (i.e., baicalein, baicalin, and hyperoside). Herb-induced bilirubin-related ADRs and the associated clinical significance should be seriously considered.


Assuntos
Coptis chinensis , Icterícia , Bilirrubina , Flavanonas , Flavonoides/farmacologia , Glucuronídeos , Glucuronosiltransferase , Humanos , Simulação de Acoplamento Molecular , Quercetina/análogos & derivados , Difosfato de Uridina
11.
Opt Express ; 30(20): 36456-36463, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258573

RESUMO

Superconducting nanowire single photon detectors (SNSPDs) have been extensively investigated due to their superior characteristics, including high system detection efficiency, low dark count rate and short recovery time. The polarization sensitivity introduced by the meandering-type superconductor nanowires is an intrinsic property of SNSPD, which is normally measured by sweeping hundreds of points on the Poincaré sphere to overcome the unknown birefringent problem of the SNSPD's delivery fiber. In this paper, we propose an alternative method to characterize the optical absorptance of SNSPDs, without sweeping hundreds of points on the Poincaré sphere. It is shown theoretically that measurements on the system detection efficiencies (SDEs) subject to cases of four specific photon polarization states are sufficient to reveal the two eigen-absorptances of the SNSPD. We validate the proposed method by comparing the measured detection spectra with the spectra attained from sweeping points on the Poincaré sphere and the simulated absorption spectra.

12.
Opt Express ; 26(4): 3947-3955, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475252

RESUMO

Polarization sensitive photo-detectors are the key to the implementation of the polarimetric imaging systems, which are proved to have superior performance than their traditional counterparts based on intensity discriminations. In this article, we report the demonstration of a superconducting nanowire single photon detector (SNSPD) of which the response is ultra-sensitive to the polarization state of the incident photons. Measurements carried out on a fabricated SNSPD show that a device efficiency of ~48% can be achieved at 1550 nm for the case of parallel polarization, which is ~420 times larger than that for the case of perpendicular polarization. While the reported polarization ultra-sensitive technique is demonstrated on a single-pixel SNSPD, it is also fully compatible with the multi-pixel SNSPD array platforms that emerged recently.

13.
Opt Express ; 25(15): 17322-17328, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789224

RESUMO

An active vanadium dioxide integrated metasurface offering broadband transmitted terahertz wave modulation with large modulation-depth under electrical control is demonstrated. The device consists of metal bias-lines arranged with grid-structure patterned vanadium dioxide (VO2) film on sapphire substrate. Amplitude transmission is continuously tuned from more than 78% to 28% or lower in the frequency range from 0.3 THz to 1.0 THz, by means of electrical bias at temperature of 68 °C. The physical mechanism underlying the device's electrical tunability is investigated and found to be attributed to the ohmic heating. The developed device possessing over 87% modulation depth with 0.7 THz frequency band is expected to have many potential applications in THz regime such as tunable THz attenuator.

14.
Phytomedicine ; 126: 155458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394733

RESUMO

BACKGROUND: As a canonical iron-dependent form of regulated cell death (RCD), ferroptosis plays a crucial role in chemical-induced liver injuries. Previous studies have demonstrated that xanthohumol (Xh), a natural prenylflavonoid isolated from hops, exhibits anti-inflammatory, anti-antioxidative and hepatoprotective properties. However, the regulatory effects of Xh on hepatic ferroptosis and the underlying mechanism have not yet been fully elucidated. PURPOSE: To investigate the hepatoprotective effects of Xh against drug-induced liver injury (DILI) and the regulatory effects of Xh on hepatic ferroptosis, as well as to reveal the underlying molecular mechanisms. METHODS/STUDY DESIGN: The hepatoprotective benefits of Xh were investigated in APAP-induced liver injury (AILI) mice and HepaRG cells. Xh was administered intraperitoneally to assess its in vivo effects. Histological and biochemical studies were carried out to evaluate liver damage. A series of ferroptosis-related markers, including intracellular Fe2+ levels, ROS and GSH levels, the levels of MDA, LPO and 4-HNE, as well as the expression levels of ferroptosis-related proteins and modulators were quantified both in vivo and in vitro. The modified peptides of Keap1 by Xh were characterized utilizing nano LC-MS/MS. RESULTS: Xh remarkably suppresses hepatic ferroptosis and ameliorates AILI both in vitro and in vivo, via suppressing Fe2+ accumulation, ROS formation, MDA generation and GSH depletion, these observations could be considerably mitigated by the ferroptosis inhibitor ferrostatin-1 (Fer-1). Mechanistically, Xh could significantly activate the Nrf2/xCT/GPX4 signaling pathway to counteract AILI-induced hepatocyte ferroptosis. Further investigations showed that Xh could covalently modify three functional cysteine residues (cys151, 273, 288) of Keap1, which in turn, reduced the ubiquitination rates of Nrf2 and prolonged its degradation half-life. CONCLUSIONS: Xh evidently suppresses hepatic ferroptosis and ameliorates AILI via covalent modifying three key cysteines of Keap1 and activating Nrf2/xCT/GPX4 signaling pathway.


Assuntos
Ferroptose , Flavonoides , Propiofenonas , Animais , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Espectrometria de Massas em Tandem , Fígado , Transdução de Sinais , Cisteína
15.
Diving Hyperb Med ; 54(3): 196-203, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39288924

RESUMO

Introduction: We aimed to study middle ear barotrauma caused by fast compression followed by buoyant ascent escape from 200 m underwater and its effect on the auditory system, and to validate the preventive effect of tympanocentesis on middle ear barotrauma. Methods: Twenty Sprague Dawley rats were divided into two groups: rats in group A underwent a simulated fast buoyant ascent escape from a depth of 200 m, while those in group B underwent tympanocentesis before the procedure described for group A. Ear endoscopy, acoustic conductance, and auditory brainstem response (ABR) tests were conducted before and after the procedure to evaluate the severity of middle ear barotrauma and auditory function in both groups. Additionally, histopathological examination of the middle ear in both groups was conducted to evaluate the severity of middle ear barotrauma by observing submucosal haemorrhage. Results: None of the ears in either group showed any abnormalities before the experiment. In group A, middle ear barotrauma was universally observed after the simulation procedure. The tympanograms of all ears were initially type A and became type B after the procedure. Further, after the simulation, the hearing thresholds at different frequencies (4, 8, 16, 24, and 32 kHz) assessed by ABR significantly increased compared to those before the procedure. In group B, no middle ear barotrauma was observed, and the hearing threshold at each frequency did not change significantly compared with post-puncturing. After dissecting the middle ear, gross pathological observations were consistent with the above results. Microscopically, blood accumulation and submucosal haemorrhage in the middle ear cavity were observed in group A but not in group B. Conclusions: Fast buoyant ascent from 200 m underwater can cause middle ear barotrauma, resulting in hearing loss. Tympanic membrane puncture can effectively prevent middle ear barotrauma caused by the rapid buoyant ascent escape procedure.


Assuntos
Barotrauma , Orelha Média , Potenciais Evocados Auditivos do Tronco Encefálico , Ratos Sprague-Dawley , Barotrauma/prevenção & controle , Barotrauma/etiologia , Animais , Orelha Média/lesões , Ratos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Testes de Impedância Acústica/métodos , Masculino , Membrana Timpânica/lesões , Mergulho/efeitos adversos , Limiar Auditivo/fisiologia
16.
Food Funct ; 15(10): 5287-5299, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38639730

RESUMO

Catechol-O-methyltransferase (COMT) plays a central role in the metabolic inactivation of endogenous neurotransmitters and xenobiotic drugs and hormones having catecholic structures. Its inhibitors are used in clinical practice to treat Parkinson's disease. In this study, a fluorescence-based visualization inhibitor screening method was developed to assess the inhibition activity on COMT both in vitro and in living cells. Following the screening of 94 natural products, Pu-erh tea extract exhibited the most potent inhibitory effect on COMT with an IC50 value of 0.34 µg mL-1. In vivo experiments revealed that Pu-erh tea extract substantially hindered COMT-mediated levodopa metabolism in rats, resulting in a significant increase in levodopa levels and a notable decrease in 3-O-methyldopa in plasma. Subsequently, the chemical components of Pu-erh tea were analyzed using UHPLC-Q-Exactive Orbitrap HRMS, identifying 24 major components. Among them, epigallocatechin gallate, gallocatechin gallate, epicatechin gallate, and catechin gallate exhibited potent inhibition of COMT activity with IC50 values from 93.7 nM to 125.8 nM and were the main bioactive constituents in Pu-erh tea responsible for its COMT inhibition effect. Inhibition kinetics analyses and docking simulations revealed that these compounds competitively inhibit COMT-mediated O-methylation at the catechol site. Overall, this study not only explained how Pu-erh tea catechins inhibit COMT, suggesting Pu-erh tea as a potential dietary intervention for Parkinson's disease, but also introduced a new strategy for discovering COMT inhibitors more effectively.


Assuntos
Catequina , Inibidores de Catecol O-Metiltransferase , Catecol O-Metiltransferase , Levodopa , Extratos Vegetais , Ratos Sprague-Dawley , Chá , Animais , Ratos , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Levodopa/metabolismo , Chá/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Masculino , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Camellia sinensis/química , Simulação de Acoplamento Molecular
17.
Chin J Nat Med ; 22(9): 797-807, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39326974

RESUMO

The Chinese herb Ephedra (also known as Mahuang) has been extensively utilized for the prevention and treatment of coronavirus-induced diseases, including coronavirus disease 2019 (COVID-19). However, the specific anti-SARS-CoV-2 compounds and mechanisms have not been fully elucidated. The main protease (Mpro) of SARS-CoV-2 is a highly conserved enzyme responsible for proteolytic processing during the viral life cycle, making it a critical target for the development of antiviral therapies. This study aimed to identify naturally occurring covalent inhibitors of SARS-CoV-2 Mpro from Ephedra and to investigate their covalent binding sites. The results demonstrated that the non-alkaloid fraction of Ephedra (ENA) exhibited a potent inhibitory effect against the SARS-CoV-2 Mpro effect, whereas the alkaloid fraction did not. Subsequently, the chemical constituents in ENA were identified, and the major constituents' anti-SARS-CoV-2 Mpro effects were evaluated. Among the tested constituents, herbacetin (HE) and gallic acid (GA) were found to inhibit SARS-CoV-2 Mpro in a time- and dose-dependent manner. Their combination displayed a significant synergistic effect on this key enzyme. Additionally, various techniques, including inhibition kinetic assays, chemoproteomic methods, and molecular dynamics simulations, were employed to further elucidate the synergistic anti-Mpro mechanisms of the combination of HE and GA. Overall, this study deciphers the naturally occurring covalent inhibitors of SARS-CoV-2 Mpro from Ephedra and characterizes their synergistic anti-Mpro synergistic effect, providing robust evidence to support the anti-coronavirus efficacy of Ephedra.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Ephedra , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Ephedra/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Ácido Gálico/farmacologia , Ácido Gálico/química , Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Flavonoides
18.
J Agric Food Chem ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39378230

RESUMO

Gut microbial bile salt hydrolases (gmBSHs), an important class of bacteria-produced cysteine hydrolases, play a crucial role in bile acid metabolism. Modulating the total gmBSH activity is a feasible way for ameliorating some metabolic diseases including colorectal cancer, type 2 diabetes, and obesity. This study reported the discovery and characterization of a botanical compound as a covalent pan-inhibitor of gmBSHs. Following the screening of more than 100 botanical compounds, tanshinones were found with strong time-dependent anti-EfBSH effects. After that, a total of 17 naturally occurring tanshinones were collected, and their anti-EfBSH potentials were tested. Among all tested tanshinones, tetrahydro tanshinone I (THTI) exhibited the most potent inhibitory effects against five gmBSHs (EfBSH, LsBSH, BtBSH, CpBSH, and BlBSH), showing the IC50 values ranging from 0.28 ± 0.05 µM to 1.62 ± 0.07 µM. Further investigations showed that THTI could covalently modify the conserved catalytic cysteine (Cys2) of all tested gmBSHs, while this agent could strongly inhibit the total gmBSHs activity in live microorganisms and murine gut luminal content. Collectively, THTI is identified as a naturally occurring covalent pan-inhibitor of gmBSHs, which offers a promising lead compound to develop more efficacious gmBSHs inhibitors for the management of bile acid metabolism and related metabolic disorders.

19.
PLoS One ; 19(8): e0308723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39133718

RESUMO

Fibrosis is a complex pathological process that can lead to the permanent loss of biological function, with P2ry2 playing a crucial role in this process. Long non-coding RNAs (lncRNAs) have been reported to play an critically important role in the fibrotic process. However, it remains unclear whether lncRNAs can regulate fibrosis through P2ry2. In this study, we detected the expression of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (lnc-MALAT1). We investigated the expression patterns of lnc-MALAT1 and P2ry2 in denervated skeletal muscle, a classical model of fibrosis. Additionally, we utilized a TGF-ß-mediated fibrosis model in NIH/3T3 cells to examine the effects of lnc-MALAT1 and P2ry2 on fibroblast activation and the underlying regulatory mechanisms in vitro. Our results demonstrated that the expression levels of lnc-MALAT1 and P2ry2 were consistently elevated in denervated skeletal muscle, correlating with the degree of fibrosis. In vitro experiments confirmed the regulatory effect of lnc-MALAT1 on P2ry2. Furthermore, we identified miR-335-3p as a potential key molecule in the regulatory relationship of lnc-MALAT1/P2ry2. Dual luciferase reporter assays and AGO2-RIP verified the molecular sponging effect of lnc-MALAT1 on miR-335-3p. Additionally, we validated the regulation of the lnc-MALAT1/miR-335-3p/P2ry2 axis through experimental approaches. In conclusion, our study identified a crucial role of lnc-MALAT1/miR-335-3p/P2ry2 axis in fibroblast activation, providing a promising treatment option against the fibrosis.


Assuntos
Fibroblastos , Fibrose , MicroRNAs , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos , Fibroblastos/metabolismo , Células NIH 3T3 , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Masculino , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta/metabolismo , Regulação da Expressão Gênica , RNA Endógeno Competitivo
20.
Chem Biol Interact ; : 111261, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39389440

RESUMO

Gut microbial Loop-1 ß-glucuronidases (gmGUS) played an important role in irinotecan-induced gastrointestinal toxicity by regulating the level of its active metabolite SN38 through enterohepatic recirculation. gmGUS inhibition has emerged as a promising approach to relieve its dose-limiting intestinal toxicity and improve its medication efficacy. This study aims to investigate the inhibitory effects and mechanisms of Platycladi cacumen and its main constituent hinokiflavone against four different types of Loop-1 gmGUS (EeGUS, SaGUS, CpGUS and EcGUS). Our results showed that the ethanol extract of Platycladi cacumen displayed strong broad-spectrum inhibition against four gmGUS, and hinokiflavone could potently inhibit EeGUS, SaGUS, CpGUS and EcGUS with IC50 values of 0.09 ± 0.01 µM, 0.44 ± 0.01 µM, 0.20 ± 0.01 µM and 0.69 ± 0.10 µM, respectively. Inhibition kinetic analyses demonstrated that hinokiflavone acted as a strong competitive inhibitor of EeGUS with Ki value of 0.13 µM, while it displayed non-competitive inhibition against SaGUS, CpGUS and EcGUS, with the Ki values of 0.43 µM, 0.33 µM and 0.76 µM, respectively. Docking simulations revealed that hinokiflavone could tightly bind with Tyr-485 and Glu-516 in catalytic sites of EeGUS, as well it created strong interactions with amino acids in loop structures of SaGUS (Asn-362), CpGUS (Phe-363, Met-364, Ala-365 and Arg-375) and EcGUS (Leu-361) to interfere the substrate entry into the catalytic pocket. Collectively, these results confirmed that hinokiflavone from Platycladi cacumen is a potent naturally occurring inhibitor of gmGUS with broad efficiency, suggesting hinokiflavone will be helpful for alleviating intestinal toxicity in irinotecan therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA