RESUMO
RAC/Rho of plant (ROP) GTPases are major molecular switches that control diverse signaling cascades for plant growth, development, and defense. Here, we discovered a signaling node that connects RAC/ROPs to cytokinins. Rice (Oryza sativa) plants develop a fibrous root system mainly composed of crown roots. Cytokinin signaling via a phosphorelay system is critical for crown root development. We show that OsRopGEF10, which activates RAC/ROPs, acts upstream of the cytoplasmic-nuclear shuttling phosphotransfer proteins AHPs of the cytokinin signaling pathway to promote crown root development. Mutations of OsRopGEF10 induced hypersensitivity to cytokinin, whereas overexpressing this gene reduced the cytokinin response. Loss of OsRopGEF10 function reduced the expression of the response regulator gene OsRR6, a repressor of cytokinin signaling, and impaired crown root development. Mutations in OsAHP1/2 led to increased crown root production and rescued the crown root defect of Osropgef10. Furthermore, auxin activates the ROP GTPase OsRAC3, which attenuates cytokinin signaling for crown root initiation. Molecular interactions between OsRopGEF10, OsRAC3, and OsAHP1/2 implicate a mechanism whereby OsRopGEF10-activated OsRAC3 recruits OsAHP1/2 to the cortical cytoplasm, sequestering them from their phosphorelay function in the nucleus. Together, our findings uncover the OsRopGEF10-OsRAC3-OsAHP1/2 signaling module, establish a link between RAC/ROPs and cytokinin, and reveal molecular crosstalk between auxin and cytokinin during crown root development.
Assuntos
Oryza , Oryza/metabolismo , Ativadores de GTP Fosfo-Hidrolase/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
The Domain of Unknown Function 506 (DUF506) belongs to the PD-(D/E) XK nuclease superfamily and has been reported to play critical roles in growth and development as well as responses to abiotic stresses. However, the function of DUF506 genes in Brassica rapa (B. rapa) remains unclear. In this study, a total of 18 BrDUF506 genes were identified and randomly distributed across eight chromosomes, categorized into four subfamilies. Analyzing their promoter sequences has uncovered various stress-responsive elements, such as those for drought, methyl jasmonate (MeJA), and abscisic acid (ABA). Bra000098 and Bra017099 exhibit significantly enhanced expression in response to heat and drought stress. Protein interaction predictions indicate that Bra000098 homolog, At2g38820, is interacting with ERF012 and PUB48 and is involved in abiotic stress regulation. Furthermore, gene expression profiling has identified Bra026262 with a high expression level in flowers and significantly decreased in female sterile mutants. Protein interaction prediction further revealed that its homolog, At4g32480, interacts with MYB and AGL proteins, suggesting the potential roles in female gametophyte development. The current study enhances our understanding of the functional roles of BrDUF506s, providing significant insights that are valuable in investigating sexual reproduction and abiotic stress responses in B. rapa.
Assuntos
Brassica rapa , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Brassica rapa/genética , Brassica rapa/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodução/genética , Genoma de Planta , Perfilação da Expressão Gênica , Filogenia , Regiões Promotoras Genéticas/genéticaRESUMO
Two large barriers are impeding the wide implementation of electric vehicles, namely driving-range and cost, primarily due to the low specific energy and high cost of mono-valence cathodes used in lithium-ion batteries. Iron is the ideal element for cathode materials considering its abundance, low cost and toxicity. However, the poor reversibility of (de)lithiation and low electronic conductivity prevent iron-based high specific energy multi-valence conversion cathodes from practical applications. In this work, a sustainable FeOF nanocomposite is developed with extraordinary performance. The specific capacity and energy reach 621 mAh g-1 and 1124 Wh kg-1 with more than 100 cycles, which triples the specific capacity, and doubles the specific energy of current mono-valence intercalation LiCoO2 . This is the result of an effective approach, combing the nanostructured FeOF with graphene, realized by making the (de)lithiation reversible by immobilizing FeOF nanoparticles and the discharge products over the graphene surface and providing the interparticle electric conduction. Importantly, it demonstrates that introducing small amount of graphene can create new materials with desired properties, opening a new avenue for altering the (de)lithiation process. Such extraordinary performance represents a significant breakthrough in developing sustainable conversion materials, eventually overcoming the driving range and cost barriers.
RESUMO
COVID-19 has emerged as a global pandemic, challenging the world's economic and health systems. Human oral microbiota comprises the second largest microbial community after the gut microbiota and is closely related to respiratory tract infections; however, oral microbiomes of patients who have recovered from COVID-19 have not yet been thoroughly studied. Herein, we compared the oral bacterial and fungal microbiota after clearance of SARS-CoV-2 in 23 COVID-19 recovered patients to those of 29 healthy individuals. Our results showed that both bacterial and fungal diversity were nearly normalized in recovered patients. The relative abundance of some specific bacteria and fungi, primarily opportunistic pathogens, decreased in recovered patients (RPs), while the abundance of butyrate-producing organisms increased in these patients. Moreover, these differences were still present for some organisms at 12 months after recovery, indicating the need for long-term monitoring of COVID-19 patients after virus clearance.
Assuntos
COVID-19 , Microbiota , Micobioma , Humanos , SARS-CoV-2 , Bactérias/genéticaRESUMO
Emergence of various circulating SARS-CoV-2 variants of concern (VOCs) promotes the identification of pan-sarbecovirus vaccines and broadly neutralizing antibodies (bNAbs). Here, to characterize monoclonal antibodies cross-reactive against both SARS-CoV-1 and SARS-CoV-2 and to search the criterion for bNAbs against all emerging SARS-CoV-2, we isolated several SARS-CoV-1-cross-reactive monoclonal antibodies (mAbs) from a wildtype SARS-CoV-2 convalescent donor. These antibodies showed broad binding capacity and cross-neutralizing potency against various SARS-CoV-2 VOCs, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta), but failed to efficiently neutralize Omicron variant and its sublineages. Structural analysis revealed how Omicron sublineages, but not other VOCs, efficiently evade an antibody family cross-reactive against SARS-CoV-1 through their escape mutations. Further evaluation of a series of SARS-CoV-1/2-cross-reactive bNAbs showed a negative correlation between the neutralizing activities against SARS-CoV-1 and SARS-CoV-2 Omicron variant. Together, these results suggest the necessity of using cross-neutralization against SARS-CoV-1 and SARS-CoV-2 Omicron as criteria for rational design and development of potent pan-sarbecovirus vaccines and bNAbs.
Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas , Humanos , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Monoclonais , Anticorpos Amplamente Neutralizantes , Anticorpos Antivirais , Glicoproteína da Espícula de CoronavírusRESUMO
BACKGROUND: Cerebral infarction is one of the most common causes of disability and death worldwide. It is reported that electric acupuncture was able to improve the prognosis of cerebral infarction by promoting angiogenesis. However, the corresponding signal pathways of angiogenesis promotes by electric acupuncture treatment needs to be further explored. METHODS: MCAO rat was employed as the animal model, and clopidogrel hydrogen sulfate treatment was set as the positive control. Behaviors of rats, H&E staining, and TTC-staining was used to evaluate the recovery of infarcted brain tissue and nervous function. After that, immunocytochemical and immunofluorescence staining was used to quantify the angiogenesis and compensatory circulation, which including the analysis of microvessel density, field/ microvessel area ratio, and microvessel diameter. Western blot and RT-PCR for the detection of the related signal molecule, PI3K, Src, and EphB4/ephrinB2. RESULTS: The neurologic impairment scores were decreased, and the brain tissue damage that showed with H&E and TTC-staining was relieved by the treatment of electric acupuncture in MCAO rat. The quantification of microvessel density and field/ microvessel area ratio was improved obviously, and the microvessel diameter was decreased which represent the angiogenesis of capillary in day 3 and 7 by the electric acupuncture treatment. We also found that the level of Src and PI3K was increased markedly followed by the up-regulation of EphB4 and EphrinB2 mRNA during the electric acupuncture treatment, and the pre-treatment of Src and/or PI3K inhibitor was able to disturb the angiogenesis of capillary. CONCLUSIONS: We proved that electric acupuncture was able to accelerate the recovery of infarcted brain tissue and nervous function in MCAO rat by the promotion of angiogenesis, which was regulated by EphB4/EphrinB2 mediated Src/PI3K signal pathway. Our study provides a potential therapy and theoretical basis for the clinical treatment of cerebral infarction by the use of electric acupuncture.
Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/enzimologia , Eletroacupuntura , Efrina-B2/metabolismo , Infarto da Artéria Cerebral Média/terapia , Neovascularização Fisiológica , Fosfatidilinositol 3-Quinase/metabolismo , Receptor EphB4/metabolismo , Quinases da Família src/metabolismo , Animais , Modelos Animais de Doenças , Efrina-B2/genética , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/fisiopatologia , Densidade Microvascular , Ratos Sprague-Dawley , Receptor EphB4/genética , Recuperação de Função Fisiológica , Transdução de Sinais , Fatores de TempoRESUMO
A single-atom TM-Nx (TM = Fe, Co, Mn, etc.) embedded graphene matrix is known for its excellent activity and durability in oxygen reduction reaction (ORR) catalysis. Among them, Mn-N4 sites have been theoretically proved to undergo a complete 4-electron pathway with low ORR overpotentials and low activation barriers in O2 dissociation. However, in reality there still remain significant activity gaps between such Mn-N4 based catalysts (such as MnPc and MnP) and Fe-N4 or Pt-group metal catalysts. The inferior ORR performance of MnPc and MnP could be attributed to the strong binding ability of Mn that causes great difficulties in removing the ORR products from the surface sites. On this basis, 17 types of Mn-Nx models containing various three-, four- and five-coordination groups were established. Systematic density functional theory (DFT) calculations were performed to investigate the N,C coordination effects on their corresponding ORR activities. Scaling relations were found among the binding strengths of key ORR intermediates, which could be modulated by the N doping level among different coordination groups. A volcano plot for ORR overpotentials (ηSHE) as a function of *OH adsorption free energy (ΔG*OH) was further established. The 3D five-coordination sites exhibit much higher ORR activity due to the great decrease in strong binding abilities compared with 2D three- or four-coordination sites. Particularly, (Cyan)Mn-N4/D is positioned near the apex of the volcano plot with an ηSHE of 0.33 V even lower than that of Pt(111) (0.34 V). Furthermore, the electron withdrawing/donating mechanisms among Mn, N, C, and O were investigated and related to the binding abilities of different coordination groups. Electronic structure calculations indicate that the binding abilities of Mn-Nx well correlate with the σ-type anti-bonding components between Mn-3d and O-2p states near the Fermi energy level.
RESUMO
This paper focuses on the study on continuous XRF (X-Ray Fluorescence) scanning elements of a 39 m core from Fuzhou Basin. The XRF scanning result is used to recognize the different sedimentary environment before the discussion of the element variation of different deposit in transitional zone between land and ocean. There are five sedimentary facies in the study area from the late Pleistocene: lacustrine-fluvial-estuary (mud tidal flat)-mixed tidal flat-fluvial. The XRF result from the 5 sedimentary stages shows that the high concentration of Co, Fe, Ti, Si are controlled largely by grain size. The average element intensity of layers with similar grain size indicates that Ca, Ti, Mn, Fe and Co from the marine (tidal flat) deposit is 3~10 times bigger than those from terrestrial (fluvial) deposit, with higher content of Si coinciding with terrestrial deposit. It is indicated that except grain size, the deposit environment is an important factor for element concentration. In this study, Ca, Ti, Mn, Fe and Co are relatively better indicator elements for marine sediments while Si is good and K, Rb and Sr have some indication for terrestrial sediments. The study result shows XRF continuous scanning can help to identify the subtle variation of elements, as to the determination of the sediment facies. Thus, XRF scanning is an important supplement to sediment facies identification. This study also provides an application example of XRF in a typical transitional zone between land and ocean.
RESUMO
This study aims to elucidate the role of miR-378a-3p in facilitating the proliferation and differentiation of synovium-derived mesenchymal stem cells (SMSCs) into chondrocytes. The effects of overexpressing miR-378a-3p on SMSCs were investigated through histological analysis, quantitative PCR, and western blotting. Then we identified binding sites of miR-378a-3p with BMP2 through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses and predictions from the RegRNA 2.0 database. Subsequently, BMP2 was confirmed as the target by which miR-378a-3p promotes the chondrogenic differentiation of SMSCs using a luciferase reporter gene assay and an miR-378a-3p RNA interference plasmid. Finally, by constructing a rat model with articular cartilage damage, we detected the reparative effects of miR-378a-3p overexpression on cartilage damage. Additionally, we verified the mechanism by which miR-378a-3p promotes chondrogenic differentiation in SMSCs. MiR-378a-3p enhances the proliferation and differentiation of SMSCs into chondrocytes by modulating the BMP2-Smad signaling pathway, thereby facilitating repair processes for articular cartilage injuries in rats. Notably, knockdown of BMP2 diminished the reparative efficacy of miR-378a-3p on articular cartilage damage. Upregulation of miR-378a-3p promotes chondrogenic differentiation in SMSCs through activation of the BMP2-Smad pathway, positioning it as a potential therapeutic target for osteoarthritis.
RESUMO
OBJECTIVE: In recent years, the anti-programmed cell death protein-1 and its ligand (PD-1/PD-L1) or combination therapies have been recommended as an alternative emerging choice of treatment for oncology patients. However, the efficacy and adverse events of different combination strategies for the treatment of tumors remain controversial. METHODS: PubMed, Embase, Cochrane Library, the American Society of Clinical Oncology (ASCO), and the European Society of Medicine Oncology (ESMO) were searched from database inception until 16 February 2022. The endpoints of objective response rate (ORR), disease control rate (DCR), overall survival (OS), progression-free survival (PFS), and adverse events (AEs) were analyzed from different treatment schemes and tumor types. The protocol was registered in PROSPERO (CRD42022328927). RESULTS: This meta-analysis included forty-eight eligible studies. Combination therapy has improved ORR (RR = 1.40, p < 0.001), DCR (RR = 1.22, p < 0.001), and PFS (the median survival ratio (MSR) was estimated to be 1.475 p < 0.001) compared to anti-PD-1/PD-L1 but had no significant benefit on OS (MSR was estimated to be 1.086 p = 0.117). Besides, combination treatment strategies are more toxic in any grade AEs (RR = 1.13, p < 0.001) and grade 3-5 AEs (RR = 1.81, p < 0.001). CONCLUSIONS: Treatment with PD-1/PD-L1 inhibitors in combination with other antitumor therapies improve patients' ORR, DCR, and PFS compared to anti-PD-1/PD-L1. However, it is regrettable that there is no benefit to OS and an increased risk of AEs in combinatorial therapies.
RESUMO
Iron-nitrogen-carbon (FeNC) materials have emerged as a promising alternative to platinum-group metals for catalyzing the oxygen reduction reaction (ORR) in proton-exchange-membrane fuel cells. However, their low intrinsic activity and stability are major impediments. Herein, an FeN-C electrocatalyst with dense FeN4 sites on hierarchically porous carbons with highly curved surfaces (denoted as FeN4 -hcC) is reported. The FeN4 -hcC catalyst displays exceptional ORR activity in acidic media, with a high half-wave potential of 0.85 V (versus reversible hydrogen electrode) in 0.5 m H2 SO4 . When integrated into a membrane electrode assembly, the corresponding cathode displays a high maximum peak power density of 0.592 W cm-2 and demonstrates operating durability over 30 000 cycles under harsh H2 /air conditions, outperforming previously reported Fe-NC electrocatalysts. These experimental and theoretical studies suggest that the curved carbon support fine-tunes the local coordination environment, lowers the energies of the Fe d-band centers, and inhibits the adsorption of oxygenated species, which can enhance the ORR activity and stability. This work provides new insight into the carbon nanostructure-activity correlation for ORR catalysis. It also offers a new approach to designing advanced single-metal-site catalysts for energy-conversion applications.
RESUMO
The ordinary intrinsic activity and disordered distribution of metal sites in zero/one-dimensional (0D/1D) single-atom catalysts (SACs) lead to inferior catalytic efficiency and short-term endurance in the oxygen reduction reaction (ORR), which restricts the large-scale application of hydrogen-oxygen fuel cells and metal-air batteries. To improve the activity of SACs, a mild synthesis method was chosen to conjugate 1D Fe SACs with 2D graphene film (Fe SAC@G) that realized a composite structure with well-ordered atomic-Fe coordination configuration. The product exhibits outstanding ORR electrocatalytic efficiency and stability in 0.1â M KOH aqueous solution. DFT-D computational results manifest the intrinsic ORR activity of Fe SAC@G originated from the newly-formed FeN4 -O-FeN4 bridge structure with moderate adsorption ability towards ORR intermediates. These findings provide new ways for designing SACs with high activity and long-term stability.
RESUMO
OBJECTIVE: To study the therapeutic effects of acupuncture combined with nimodipine for vascular dementia. METHODS: Acupuncture was applied at Baihui (GV 20), Shenshu (BL 23), Geshu (BL 17), and the points selected according to the midnight-noon, ebb-flow eight methods of the intelligent turtle, combined with the drug nimodipine. The treatment was continued for 8 consecutive weeks. RESULTS: Of the 30 cases treated, 6 cases were cured, 21 cases improved, and 3 cases failed, with a total effective rate of 90%. CONCLUSION: Acupuncture at Baihui (GV 20), Shenshu (BL 23), Geshu (BL 17), and the points selected according to the midnight-noon, ebb-flow eight methods of the intelligent turtle combined with the drug nimodipine can yield definite therapeutic effects for vascular dementia.
Assuntos
Terapia por Acupuntura/métodos , Demência Vascular/terapia , Nimodipina/uso terapêutico , Atividades Cotidianas , Pontos de Acupuntura , Administração Oral , Adulto , Idoso , Bloqueadores dos Canais de Cálcio/administração & dosagem , Bloqueadores dos Canais de Cálcio/uso terapêutico , Terapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nimodipina/administração & dosagem , Resultado do TratamentoAssuntos
Carcinoma Hepatocelular , Ferroptose , Imunoterapia , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Ferroptose/genética , Prognóstico , Imunoterapia/métodos , Sistema y+ de Transporte de Aminoácidos/genética , MasculinoRESUMO
Metal single-atom catalysts (MSATs), such as Fe-N coordination doped sp2-carbon matrices, have emerged as a promising oxygen reduction reaction (ORR) catalyst to replace their costly platinum (Pt) based counterparts in fuel cells. In this work, we employ density functional theory (DFT) to systematically discuss the electronic-structure and surface-stress effects of N, C configurations on Fe-N doped graphene in single and double vacancy. The formation energy (E f) of Fe-N-gra dropped off with the increase of N atoms incorporated for both single and double vacancy groups. The theoretical overpotentials on Fe-N-C sites were calculated and revealed that moderate N-doping levels and doping configuration could enhance the ORR activity of Fe-N coordination structures in the double vacancy and that doping N atoms is not effective for ORR activity in single vacancy. By exploring the d-band centers, we found that ligand effects and surface tension effects contribute to the modification of the d-band centers of metal Fe atoms. An optimum Fe-N-C ORR catalyst should exhibit moderate surface stress properties and an ideal N, C ligand configuration. This study provides new insight into the effects of N atom doping in Fe-N-gra catalysts and could help guide the rational design of high-performance carbon-based ORR electrocatalysts.
RESUMO
BACKGROUND: To observe the effect of Miao medicine and Tongqiao Huashuan Decoction on the expression of vascular endothelial growth factor (VEGF) and ephrin-B2 (EphB2) in the frontal lobe of the involved side and the cerebellum of rat models of middle cerebral artery occlusion (MCAO) and to reveal the pharmacological mechanism of Tongqiao Huashuan Decoction in treating acute ischemic stroke. METHODS: Seventy healthy male SD rats were randomly divided into sham operation, model, salvia miltiorrhiza (S. miltiorrhiza), and Miao medicine groups. Modified Longa's method was used to prepare a cerebral ischemia reperfusion model. After the operation, the rats in the sham operation group and model group were intragastrically administered with saline, those in the Miao medicine group were intragastrically administered with Tongqiao Huashuan Decoction, and those in the S. miltiorrhiza group were intraperitoneally injected with S. miltiorrhiza. After 14 days of administration, the neurological deficit scores of the rats in each group were compared before and after treatment. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of the brain tissues in the right infarcted areas of the rats. VEGF expression in the frontal lobe and cerebellum was observed through immunohistochemistry, and in situ hybridization to detect EphB2 expression in the frontal lobe and cerebellum. RESULTS: The neurological deficit scores were significantly improved in the Miao medicine and S. miltiorrhiza groups aftertreatment compared with those of the model group (P<0.05) and was higher in the Miao medicine group than in the S. miltiorrhiza group. The VEGF expression in the right frontal lobe and cerebellum was significantly increased in the Miao medicine and S. miltiorrhiza groups (P<0.05) with the former having higher levels than the latter (P<0.05). EphB2 expression was significantly increased in the frontal lobe and cerebellum in the Miao medicine and S. miltiorrhiza groups (P<0.05) and was higher in the frontal lobe of the Miao medicine group than that of the S. miltiorrhiza group (P<0.05) but was not significantly different in the cerebellum in the S. miltiorrhiza and Miao medicine groups (P>0.05). CONCLUSIONS: Tongqiao Huashuan Decoction can improve the neurological function score and promote the VEGF expression in the frontal lobe and cerebellum and the EphB2 expression in the frontal lobe of the involved side of MCAO rats. The pharmacological mechanism of Tongqiao Huashuan Decoction in treating acute ischemic stroke may be related to its regulation of VEDF and EphB2 expression in the distal part of the involved side.
Assuntos
Encéfalo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Receptor EphB2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Encéfalo/metabolismo , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
The chemical composition and antioxidant activities of the essential oil from Nandina domestica fruits were studied for the first time. Twenty-two compounds, representing 82.79% of the oil, were identified from the oil. The major compounds were 3-hexen-1-ol (12.9%), linalool (12.3%), 2-methoxy-4-vinylphenol (9.9%), oleic acid (8.0%), furfural (5.8%) and 2,6-di-tert-butyl-4-methylphenol (5.7%). The antioxidant activities of the oil were evaluated using reducing power, metal chelating ability and scavenging capacity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-3-ethylbenzthiazoline-6-sulfonate (ABTS) and superoxide anion free radical. The oil exhibited significant antioxidant activities.
Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Berberidaceae/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Monoterpenos Acíclicos , Compostos de Bifenilo/química , Avaliação Pré-Clínica de Medicamentos/métodos , Frutas/química , Guaiacol/análogos & derivados , Guaiacol/isolamento & purificação , Hexanóis/isolamento & purificação , Concentração Inibidora 50 , Monoterpenos/isolamento & purificação , Picratos/química , Superóxidos/química , Compostos de Vinila/isolamento & purificaçãoRESUMO
OBJECTIVE: To observe the effect and explore the mechanism of needling Quchi and Taichong points in treating hypertension patients and the influence on blood levels of angiotension converting enzyme (ACE) and endothelin (ET) levels. METHODS: Sixty hypertension patients were randomly divided into the Taichong needling group (A), Quchi needling group (B) and control group (C, treated by Captopril). Changes of plasma ET was determined by radioimmunoassay (RIA) and serum ACE content was measured by chemical colorimeter. RESULTS: The effect of lowering systolic pressure at 15 min after needling in Group B was better than that in Group A (P < 0.01), but it was inferior to the latter at 120 min after withdrawal of needle (P < 0.05), while after one course treatment, the effect in Group B and C was obviously better than that in Group A (P < 0.05 and P < 0.01). Content of serum ACE significantly increased in Group B and that of plasma ET significantly decreased in Group A, showing significant difference between the two groups, all P < 0.01. CONCLUSION: Needling Quchi and Taichong all show hypertensive effect, the former is obviously higher than that of the latter. They could regulate the blood level of ACE and ET, protect and repair vascular endothelial cells, but the key links of their mechanism might be different.
Assuntos
Terapia por Acupuntura , Endotelina-1/sangue , Hipertensão/terapia , Peptidil Dipeptidase A/sangue , Pontos de Acupuntura , Adulto , Idoso , Feminino , Humanos , Hipertensão/sangue , Masculino , Pessoa de Meia-Idade , RadioimunoensaioRESUMO
OBJECTIVE: To compare the difference of the therapeutic effect of acupuncture and western medicine on the patients with vertebral-basilar insufficiency (VBI), and investigate its mechanism. METHODS: According to the different velocity of blood flow recorded by Transcranial Doppler (TCD), sixty patients with VBI were divided into an acupunture group (31 cases) and a western medicine group (29 cases). In the acupuncture group, the patients were punctured at Fengchi (GB 20) and "Gongxue" (Extra). In the western medicine group, the patients were orally given the Flunarizine hydrochlorid capsules. Before and after two-week treatment, the clinical symptoms and related data of TCD were compared, analyzed and evaluated. RESULTS: The clinical symptoms were obviously improved in the acupuncture group, which was better than the western medicine group (P < 0.05). Acupuncture not only could up-regulate the velocity of vertebral-basilar blood flow (VBF) on the patients with slower VBF of peak-systolic phase (Vs), end-diastolic phase (Vd) and mean value (Vm), but also reduced the VBF on the patients with faster Vs, Vd and Vm. In comparison of the data before and after treatment, there were significantly differences in two groups (P < 0.05), however, there were no difference between the two groups (all P > 0.05). On the index of vascular pulsation (PI), resistance index (RI) and Vs/Vd, there were no difference in both groups before and after treatment (all P > 0.05). CONCLUSION: Acupuncturing at Fengchi (GB 20) and "Gongxue" has bidirectional and beneficial function of regulation on the VBF, but no active role on the compatibility of vertebral-basilar blood vessel.