RESUMO
Retroelements are the widespread jumping elements considered as major drivers for genome evolution, which can also be repurposed as gene-editing tools. Here, we determine the cryo-EM structures of eukaryotic R2 retrotransposon with ribosomal DNA target and regulatory RNAs. Combined with biochemical and sequencing analysis, we reveal two essential DNA regions, Drr and Dcr, required for recognition and cleavage. The association of 3' regulatory RNA with R2 protein accelerates the first-strand cleavage, blocks the second-strand cleavage, and initiates the reverse transcription starting from the 3'-tail. Removing 3' regulatory RNA by reverse transcription allows the association of 5' regulatory RNA and initiates the second-strand cleavage. Taken together, our work explains the DNA recognition and RNA supervised sequential retrotransposition mechanisms by R2 machinery, providing insights into the retrotransposon and application reprogramming.
Assuntos
RNA , Retroelementos , RNA/metabolismo , Clivagem do DNA , DNA Polimerase Dirigida por RNA/metabolismo , Transcrição ReversaRESUMO
The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.
Assuntos
Bactérias , Bacteriófagos , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Bactérias/virologia , Bactérias/genética , Bactérias/imunologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Chryseobacterium/genética , Chryseobacterium/imunologia , Chryseobacterium/virologia , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Clivagem do DNA , Loci Gênicos/genética , Modelos Moleculares , Domínios ProteicosRESUMO
Cryogenic electron microscopy (cryo-EM) has now been widely used for determining multichain protein complexes. However, modeling a large complex structure, such as those with more than ten chains, is challenging, particularly when the map resolution decreases. Here we present DiffModeler, a fully automated method for modeling large protein complex structures. DiffModeler employs a diffusion model for backbone tracing and integrates AlphaFold2-predicted single-chain structures for structure fitting. DiffModeler showed an average template modeling score of 0.88 and 0.91 for two datasets of cryo-EM maps of 0-5 Å resolution and 0.92 for intermediate resolution maps (5-10 Å), substantially outperforming existing methodologies. Further benchmarking at low resolutions (10-20 Å) confirms its versatility, demonstrating plausible performance.
RESUMO
BACKGROUND: The intrathecally administered antisense oligonucleotide tofersen reduces synthesis of the superoxide dismutase 1 (SOD1) protein and is being studied in patients with amyotrophic lateral sclerosis (ALS) associated with mutations in SOD1 (SOD1 ALS). METHODS: In this phase 3 trial, we randomly assigned adults with SOD1 ALS in a 2:1 ratio to receive eight doses of tofersen (100 mg) or placebo over a period of 24 weeks. The primary end point was the change from baseline to week 28 in the total score on the ALS Functional Rating Scale-Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) among participants predicted to have faster-progressing disease. Secondary end points included changes in the total concentration of SOD1 protein in cerebrospinal fluid (CSF), in the concentration of neurofilament light chains in plasma, in slow vital capacity, and in handheld dynamometry in 16 muscles. A combined analysis of the randomized component of the trial and its open-label extension at 52 weeks compared the results in participants who started tofersen at trial entry (early-start cohort) with those in participants who switched from placebo to the drug at week 28 (delayed-start cohort). RESULTS: A total of 72 participants received tofersen (39 predicted to have faster progression), and 36 received placebo (21 predicted to have faster progression). Tofersen led to greater reductions in concentrations of SOD1 in CSF and of neurofilament light chains in plasma than placebo. In the faster-progression subgroup (primary analysis), the change to week 28 in the ALSFRS-R score was -6.98 with tofersen and -8.14 with placebo (difference, 1.2 points; 95% confidence interval [CI], -3.2 to 5.5; P = 0.97). Results for secondary clinical end points did not differ significantly between the two groups. A total of 95 participants (88%) entered the open-label extension. At 52 weeks, the change in the ALSFRS-R score was -6.0 in the early-start cohort and -9.5 in the delayed-start cohort (difference, 3.5 points; 95% CI, 0.4 to 6.7); non-multiplicity-adjusted differences favoring early-start tofersen were seen for other end points. Lumbar puncture-related adverse events were common. Neurologic serious adverse events occurred in 7% of tofersen recipients. CONCLUSIONS: In persons with SOD1 ALS, tofersen reduced concentrations of SOD1 in CSF and of neurofilament light chains in plasma over 28 weeks but did not improve clinical end points and was associated with adverse events. The potential effects of earlier as compared with delayed initiation of tofersen are being further evaluated in the extension phase. (Funded by Biogen; VALOR and OLE ClinicalTrials.gov numbers, NCT02623699 and NCT03070119; EudraCT numbers, 2015-004098-33 and 2016-003225-41.).
Assuntos
Esclerose Lateral Amiotrófica , Oligonucleotídeos Antissenso , Superóxido Dismutase-1 , Adulto , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Método Duplo-Cego , Humanos , Injeções Espinhais , Proteínas de Neurofilamentos/sangue , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Superóxido Dismutase-1/líquido cefalorraquidiano , Superóxido Dismutase-1/genéticaRESUMO
Elimination of autoreactive developing B cells is an important mechanism to prevent autoantibody production. However, how B cell receptor (BCR) signaling triggers apoptosis of immature B cells remains poorly understood. We show that BCR stimulation up-regulates the expression of the lysosomal-associated transmembrane protein 5 (LAPTM5), which in turn triggers apoptosis of immature B cells through two pathways. LAPTM5 causes BCR internalization, resulting in decreased phosphorylation of SYK and ERK. In addition, LAPTM5 targets the E3 ubiquitin ligase WWP2 for lysosomal degradation, resulting in the accumulation of its substrate PTEN. Elevated PTEN levels suppress AKT phosphorylation, leading to increased FOXO1 expression and up-regulation of the cell cycle inhibitor p27Kip1 and the proapoptotic molecule BIM. In vivo, LAPTM5 is involved in the elimination of autoreactive B cells and its deficiency exacerbates autoantibody production. Our results reveal a previously unidentified mechanism that contributes to immature B cell apoptosis and B cell tolerance.
Assuntos
Apoptose , Tolerância Imunológica , Proteínas de Membrana , Células Precursoras de Linfócitos B , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteína Forkhead Box O1/metabolismo , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/genética , PTEN Fosfo-Hidrolase/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Conjugated π-surfaces are ubiquitous in molecules and materials. However, large π-surfaces up to a few nanometers in size are difficult to construct in an atomically precise manner. They tend to aggregate because of strong π-π interactions, resulting in notorious problems for both purification and spectroscopic investigations. Here, by contrast, we report the design, synthesis, and full characterizations of a nonplanar nanographene 1, which has a large, precise, and nonstacked π-surface. It is soluble in common organic solvents and allows for thorough investigations. The structure of 1, comprising 85 fused rings with an extended π-surface of 3 nm in size, is unambiguously confirmed by single-crystal X-ray diffraction. Unusual electronic structures, record-high near-infrared absorption, pronounced magnetic shielding, and ultrastrong heteromolecular van der Waals complexations are demonstrated, enabling us to establish a clear structure-property relationship, which has been elusive for decades. These results have broad implications for studying and understanding various phenomena and processes relevant to both discrete and interacting π-surfaces.
RESUMO
Despite significant progress achieved in artificial self-sorting in solution, operating self-sorting in the body remains a considerable challenge. Here, we report an in vivo self-sorting peptide system via an in situ assembly evolution for combined cancer therapy. The peptide E3C16-SS-EIY consists of two disulfide-connected segments, E3C16SH and SHEIY, capable of independent assembly into twisted or flat nanoribbons. While E3C16-SS-EIY assembles into nanorods, exposure to glutathione (GSH) leads to the conversion of the peptide into E3C16SH and SHEIY, thus promoting in situ evolution from the nanorods into self-sorted nanoribbons. Furthermore, incorporation of two ligand moieties targeting antiapoptotic protein XIAP and organellar endoplasmic reticulum (ER) into the self-sorted nanoribbons allows for simultaneous inhibition of XIAP and accumulation surrounding ER. This leads to the cytotoxicity toward the cancer cells with elevated GSH levels, through activating caspase-dependent apoptosis and inducing ER dysfunction. In vivo self-sorting of E3C16-SS-EIY decorated with ligand moieties is thoroughly validated by tissue studies. Tumor-bearing mouse experiments confirm the therapeutic efficacy of the self-sorted assemblies for inhibiting tumor growth, with excellent biosafety. Our findings demonstrate an efficient approach to develop in vivo self-sorting systems and thereby facilitating in situ formulation of biomedical agents.
Assuntos
Peptídeos , Humanos , Animais , Peptídeos/química , Peptídeos/farmacologia , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Glutationa/química , Glutationa/metabolismo , Linhagem Celular Tumoral , Nanotubos/químicaRESUMO
Immune checkpoint inhibitors (ICIs) attenuate mechanisms of self-tolerance in the immune system, enabling T cell responses to cancerous tissues and revolutionizing care for cancer patients. However, by loweringbarriers against self-reactivity, ICIs often result in varying degrees of autoimmunity. Cardiovascular complications, particularly myocarditis but also arrhythmias, pericarditis, and vasculitis, have emerged as significant complications associated with ICIs. In this review, we examine the clinical aspects and basic science principles that underlie ICI-associated myocarditis and other cardiovascular toxicities. In addition, we discuss current therapeutic approaches. We believe a better mechanistic understanding of ICI-associated toxicities can lead to improved patient outcomes by reducing treatment-related morbidity.
Assuntos
Sistema Cardiovascular , Miocardite , Neoplasias , Cardiotoxicidade , Humanos , Inibidores de Checkpoint Imunológico , Miocardite/tratamento farmacológico , Neoplasias/tratamento farmacológicoRESUMO
In this study, we investigated whether matched and mismatched multidrug resistance gene (MDR1) genotypes (G2677TA, C1236T and C3435T) were associated with prognosis in patients after allogeneic haematopoietic stem cell transplantation (allo-HSCT). One hundred patients after transplantation and their donors were enrolled. Matched MDR1 G2677TA donor-recipient was associated with an increased risk of non-relapse mortality (NRM) (29.5% vs. 6.2%, p = 0.002), poor overall survival (OS) (51.7% vs. 63.8%, p = 0.024) and disease-free survival (DFS) (38.6% vs. 67%, p = 0.005). There were no differences in OS, DFS or NRM between MDR1 C1236T- and C3435T-matched and -mismatched groups. Subgroup analysis suggested that within the matched MDR1 G2677TA group, male gender, haematopoietic cell transplantation-specific comorbidity index ≥1, serum creatinine >137.2 µmol/L and post-transplantation thrombocytopenia were associated with poor survival. Our results demonstrated that patients receiving matched MDR1 G2677TA allo-HSCT experienced a poorer prognosis compared with the mismatched group. The potential mechanism may involve increased expression of P-glycoprotein, leading to decreased accumulation of antimicrobial agents and ultimately contributing to the progression of inflammation. This identification of MDR1 G2677TA genotype compatibility holds promise as a valuable molecular tool for selecting donors for allo-HSCT.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Genótipo , Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Masculino , Feminino , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Polimorfismo de Nucleotídeo Único , Doadores de Tecidos , Transplante Homólogo , Prognóstico , Idoso , Resultado do TratamentoRESUMO
Myocardial fibrosis, a common pathophysiological consequence of various cardiovascular diseases, is characterized by fibroblast activation and excessive deposition of extracellular matrix (ECM) collagen. Accumulating evidence indicates that myocardial fibrosis contributes to ventricular stiffness, systolic and diastolic dysfunction, and ultimately leads to the development of heart failure (HF). Early detection and targeted treatment of myocardial fibrosis is critical to reverse ventricular remodeling and improve clinical outcomes in patients with cardiovascular diseases. However, despite considerable progresses made in understanding molecular mechanisms of myocardial fibrosis, non-invasive imaging to assess myocardial fibrosis and guide clinical treatment is still not widely available, limiting the development of innovative treatment strategies. This review summarizes recent progresses of imaging modalities for detecting myocardial fibrosis, with a focus on nuclear medicine, echocardiography and cardiac magnetic resonance (CMR).
RESUMO
A topological bound state in the continuum (TBIC) is a novel topological phase that has attracted significant attention. Different from conventional topological insulators (TIs), where boundary states reside within gaps, TBICs can support unconventional boundary states that remain isolated from the surrounding bulk states. In this work, we experimentally demonstrate multiple TBICs in photonic bilayer trimer lattices using femtosecond laser writing technology. By modulating the interlayer coupling between two trimer chains, we observe the emergence of two distinct types of TBICs. Moreover, we experimentally achieve the coexistence of in-gap topological states and TBICs and demonstrate the transformation between them. Our work unveils new insights into the flexible construction of TBICs, and this method can be easily applied to other one-dimensional topological structures, offering promising avenues for further research.
RESUMO
Pure red cell aplasia (PRCA) is a rare bone marrow (BM) disorder characterized by ineffective erythropoiesis, reduced reticulocyte count, normocytic anemia, and the absence of erythroid precursors. Here, we present a rare instance of PRCA occurring after ABO-matched allo-HSCT in a refractory/relapsed acute myeloid leukemia (R/R AML) patient. In this case, the patient received a combination treatment of Gilteritinib, Venetoclax, and Azacitidine. Remarkably, this treatment not only reduced myeloblasts but also facilitated the restoration of erythroid hematopoiesis.
Assuntos
Compostos de Anilina , Doenças da Medula Óssea , Compostos Bicíclicos Heterocíclicos com Pontes , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Pirazinas , Aplasia Pura de Série Vermelha , Sulfonamidas , Humanos , Compostos de Anilina/uso terapêutico , Azacitidina/uso terapêutico , Doenças da Medula Óssea/complicações , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/complicações , Pirazinas/uso terapêutico , Aplasia Pura de Série Vermelha/etiologia , Sulfonamidas/uso terapêuticoRESUMO
Titanium silicon molecular sieve (TS-1) is an oxidation catalyst that possesses a long lifetime of charge transfer excited state, high Ti utilization efficiency, large specific surface area, and good adsorption property; therefore, TS-1 acts as a Ti-based photocatalyst candidate. In this work, TS-1 coupled Bi2MoO6 (TS-1/BMO) photocatalysts were fabricated via a facile hydrothermal route. Interestingly, the optimized TS-1/BMO-1.0 catalyst exhibited a decent photodegradation property toward tetracycline hydrochloride (85.49% in 120 min) under the irradiation of full spectrum light, which were 4.38 and 1.76 times compared to TS-1 and BMO, respectively. The enhanced photodegradation property of the TS-1/BMO-1.0 catalyst could be attributed to the reinforced light-harvesting capacity of the photocatalyst, high charge mobility, and suitable band structure for tetracycline hydrochloride degradation. In addition, the mechanism of photocatalytic degradation of tetracycline hydrochloride by the TS-1/BMO-1.0 catalyst was reasonably proposed based on the band structure, trapping, and ESR tests. This research provided feasible ideas for the design and construction of high-efficiency photocatalysts for contaminant degradation.
RESUMO
BACKGROUND: The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS: Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION: Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.
Assuntos
Esterases , Metionina , Esterases/metabolismo , Esterases/genética , Metionina/metabolismo , Xilanos/metabolismo , Sulfato de Amônio/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Hypocreales/metabolismo , Hypocreales/enzimologia , Hypocreales/genética , Lignina/metabolismo , AcetilaçãoRESUMO
The overuse and misuse of antibiotics could significantly increase their accumulation in soils. Consequently, antibiotics possibly enter food chain through crop uptake, posing a threat to global food security. Assessing the exposure risks of antibiotics for crops is crucial for addressing this global issue. In this study, we assessed global antibiotic exposure risk for crops, incorporating a machine learning adsorption model based on 4893 data sets from nine antibiotics. The optimized machine learning adsorption model, using the eXtreme Gradient Boosting algorithm and the class-specific modeling strategy, demonstrated relatively good performance. Notably, we introduced unsaturated soil conditions and considered spatiotemporal variations in soil moisture and temperature for the first time in such a risk assessment. Global distributions of antibiotic exposure risk for crops were predicted for March, June, September, and December. The results indicate that soil moisture significantly influences the exposure risk assessment. Relatively high exposure risk for crops was observed during months with colder local temperatures: generally June for the Southern Hemisphere and December for the Northern Hemisphere. The resulting map highlights high-risk agricultural regions, including southern Canada, western Russia, and southern Australia.
RESUMO
Adult mouse muscle satellite cells (MuSCs) are quiescent in uninjured muscles. Upon muscle injury, MuSCs exit quiescence, reenter the cell cycle to proliferate and self-renew, and then differentiate and fuse to drive muscle regeneration. However, it remains poorly understood how MuSCs transition from quiescence to the cycling state. Here, we report that Pax3 and Pax7 binding protein 1 (Paxbp1) controls a key checkpoint during this critical transition. Deletion of Paxbp1 in adult MuSCs prevented them from reentering the cell cycle upon injury, resulting in a total regeneration failure. Mechanistically, we found an abnormal elevation of reactive oxygen species (ROS) in Paxbp1-null MuSCs, which induced p53 activation and impaired mTORC1 signaling, leading to defective cell growth, apoptosis, and failure in S-phase reentry. Deliberate ROS reduction partially rescued the cell-cycle reentry defect in mutant MuSCs. Our study reveals that Paxbp1 regulates a late cell-growth checkpoint essential for quiescent MuSCs to reenter the cell cycle upon activation.
Assuntos
Células-Tronco Adultas/fisiologia , Pontos de Checagem do Ciclo Celular , Proteínas Nucleares/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Técnicas de Inativação de Genes , Microscopia Intravital , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Imagem com Lapso de TempoRESUMO
PURPOSE: To investigate the effect of the interval between bilateral cochlear implantation on the development of bilateral peripheral auditory pathways as revealed by the electrically evoked auditory brainstem response (EABR). METHODS: Fifty-eight children with profound bilateral sensorineural hearing loss were recruited. Among them, 33 children received sequential bilateral cochlear implants (CIs), and 25 children received simultaneous bilateral CIs. The bilateral EABRs evoked by electrical stimulation from the CI electrode were recorded on the day of second-side CI activation. RESULTS: The latencies of wave III (eIII) and wave V (eV) were significantly shorter on the first CI side than on the second CI side in children with sequential bilateral CIs but were similar between the two sides in children with simultaneous bilateral CIs. Furthermore, the latencies were prolonged from apical to basal channels along the cochlea in the two groups. In children with sequential CIs, the inter-implant interval was negatively correlated with the eV latency on the first CI side and was positively correlated with bilateral differences in the eIII and eV latencies. CONCLUSIONS: Unilateral CI use promotes the maturation of ipsilateral auditory conduction function. However, a longer inter-implant interval results in more unbalanced development of bilateral auditory brainstem pathways. Bilateral cochlear implantation with no or a short interval is recommended.
Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Perda Auditiva Neurossensorial , Criança , Humanos , Perda Auditiva Neurossensorial/cirurgia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Tronco Encefálico/cirurgia , Surdez/cirurgiaRESUMO
BACKGROUND: Bariatric surgery (BS) is an effective approach in treating obesity and ameliorating T2DM with obesity. Our previous studies demonstrated that duodenal-jejunal bypass (DJB) altered long non-coding RNAs (lncRNAs) in the gastrointestinal system, which is associated with modulation of lipid metabolism, and glycemic control through entero-pancreatic axis and gut-brain axis. The adipose non-coding RNA expression profile and the underlying competing endogenous RNA (ceRNA) regulatory network pattern post DJB needs further research and investigation. RESULTS: In this study, we compared the lncRNAs, circular RNAs (circRNAs) and messenger RNAs (mRNAs) expression in adipose tissues between the sham group and the DJB group. 2219 differentially expressed mRNAs (DEmRNAs), 722 differential expression of lncRNAs (DElncRNAs) and 425 differential expression of circRNAs (DEcircRNAs) were identified. GO terms and KEGG pathways analysis of the DEmRNAs implied that the dysregulated adipose mRNAs were associated with lipid, amino acid metabolism, insulin resistance, and extra cellular matrix (ECM)-related pathways. Moreover, via analyzing ceRNA regulatory networks of DElncRNAs and DEcircRNAs, 31 hub DE mRNAs, especially Mpp7, 9330159F19Rik, Trhde. Trdn, Sorbs2, were found on these pathways. CONCLUSIONS: The role of DJB in adipose tends to remodel ECM and improve the energy metabolism through the ceRNA regulatory network.
Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Endógeno Competitivo , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Obesidade , Redes Reguladoras de GenesRESUMO
Energy efficiency and security issues are the main concerns in wireless sensor networks (WSNs) because of limited energy resources and the broadcast nature of wireless communication. Therefore, how to improve the energy efficiency of WSNs while enhancing security performance has attracted widespread attention. In order to solve this problem, this paper proposes a new deep reinforcement learning (DRL)-based strategy, i.e., DeepNR strategy, to enhance the energy efficiency and security performance of WSN. Specifically, the proposed DeepNR strategy approximates the Q-value by designing a deep neural network (DNN) to adaptively learn the state information. It also designs DRL-based multi-level decision-making to learn and optimize the data transmission paths in real time, which eventually achieves accurate prediction and decision-making of the network. To further enhance security performance, the DeepNR strategy includes a defense mechanism that responds to detected attacks in real time to ensure the normal operation of the network. In addition, DeepNR adaptively adjusts its strategy to cope with changing network environments and attack patterns through deep learning models. Experimental results show that the proposed DeepNR outperforms the conventional methods, demonstrating a remarkable 30% improvement in network lifespan, a 25% increase in network data throughput, and a 20% enhancement in security measures.
RESUMO
STATEMENT OF PROBLEM: Advanced additive manufacturing (AM) of zirconia is an emerging technology that can explore the limitations of traditional computer-aided design and computer-aided manufacturing (CAD-CAM) milling techniques. However, a comprehensive evaluation of their differences in producing zirconia restorations, especially multi-unit restorations, is lacking. PURPOSE: The purpose of this in vitro study was to compare the accuracy, fit, marginal quality, and surface roughness of zirconia 3-unit fixed dental prostheses (FDPs) by using advanced AM and 2 CAD-CAM milling materials. MATERIAL AND METHODS: Based on the same CAD model, 30 3-unit posterior FDPs (n=10) were manufactured by using AM and 2 CAD-CAM milling materials (VT and UP). The accuracies of the total, intaglio, occlusal, axial, and marginal regions were calculated separately by comparing the scanned model with the design model by using 3-dimensional (3D) deviation analysis. The silicone layer was scanned to evaluate the marginal and intaglio fit in 3 dimensions. A 3D laser microscope was used for surface roughness detection, marginal quality assessment, and marginal defect measurement. The data were analyzed using ANOVA and the Tukey post hoc test (α=.05). RESULTS: Compared with CAD-CAM milling, the AM group had higher accuracy and smaller positive deviations on the axial and intaglio regions (P<.001). Different manufacturing methods showed no statistically significant effect on the mean intaglio fit (P>.05), and all were within the clinically acceptable range (<100 µm). The intaglio gap was significantly higher than the target parameter in the occlusal regions. AM-fabricated FDPs had significantly higher surface roughness than milled ones, yet showed better margin quality with fewer marginal defects CONCLUSIONS: Compared with CAD-CAM milling, the advanced additively manufactured zirconia 3-unit FDPs provided better accuracy, improved margin quality, and clinically acceptable fit, but higher surface roughness, and may be a promising alternative for clinical applications.