Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 583(7815): 282-285, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32218527

RESUMO

The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.


Assuntos
Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Eutérios/virologia , Evolução Molecular , Genoma Viral/genética , Homologia de Sequência do Ácido Nucleico , Sequência de Aminoácidos , Animais , Betacoronavirus/química , Betacoronavirus/classificação , COVID-19 , China/epidemiologia , Quirópteros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Genômica , Humanos , Malásia , Pandemias , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Recombinação Genética , SARS-CoV-2 , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Zoonoses/virologia
2.
PLoS Comput Biol ; 20(2): e1011871, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330139

RESUMO

Massive sequencing of SARS-CoV-2 genomes has urged novel methods that employ existing phylogenies to add new samples efficiently instead of de novo inference. 'TIPars' was developed for such challenge integrating parsimony analysis with pre-computed ancestral sequences. It took about 21 seconds to insert 100 SARS-CoV-2 genomes into a 100k-taxa reference tree using 1.4 gigabytes. Benchmarking on four datasets, TIPars achieved the highest accuracy for phylogenies of moderately similar sequences. For highly similar and divergent scenarios, fully parsimony-based and likelihood-based phylogenetic placement methods performed the best respectively while TIPars was the second best. TIPars accomplished efficient and accurate expansion of phylogenies of both similar and divergent sequences, which would have broad biological applications beyond SARS-CoV-2. TIPars is accessible from https://tipars.hku.hk/ and source codes are available at https://github.com/id-bioinfo/TIPars.


Assuntos
Genoma , Software , Filogenia , Funções Verossimilhança , SARS-CoV-2/genética
3.
J Virol ; 97(2): e0168422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36651747

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is becoming a dominant circulator and has several mutations in the spike glycoprotein, which may cause shifts of immunogenicity, so as to result in immune escape and breakthrough infection among the already infected or vaccinated populations. It is unclear whether infection with Omicron could generate adequate cross-variant protection. To investigate this possibility, we used Syrian hamsters as an animal model for infection of SARS-CoV-2. The serum from Omicron BA.1 variant-infected hamsters showed a significantly lower neutralization effect against infection of the same or different SARS-CoV-2 variants than the serum from Beta variant-infected hamsters. Furthermore, the serum from Omicron BA.1 variant-infected hamsters were insufficient to protect against rechallenge of SARS-CoV-2 Prototype, Beta and Delta variants and itself. Importantly, we found that rechallenge with different SARS-CoV-2 lineages elevated cross-variant serum neutralization titers. Overall, our findings indicate a weakened immunogenicity feature of Omicron BA.1 variant that can be overcome by rechallenge of a different SARS-CoV-2 lineages. Our results may lead to a new guideline in generation and use of the vaccinations to combat the pandemic of SARS-CoV-2 Omicron variant and possible new variants. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant causes breakthrough infections among convalescent patients and vaccinated populations. However, Omicron does not generate robust cross-protective responses. Here, we investigate whether heterologous SARS-CoV-2 challenge is able to enhance antibody response in a sensitive animal model, namely, Syrian hamster. Of note, a heterologous challenge of Beta and Omicron BA.1 variant significantly broadens the breadth of SARS-CoV-2 neutralizing responses against the prototype, Beta, Delta, and Omicron BA.1 variants. Our findings confirm that vaccination strategy with heterologous antigens might be a good option to protect against the evolving SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos Heterófilos/imunologia , Infecções Irruptivas , COVID-19/prevenção & controle , Mesocricetus , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Imunogenicidade da Vacina
4.
J Virol ; 97(6): e0043423, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37289052

RESUMO

Although influenza A viruses of several subtypes have occasionally infected humans, to date only those of the H1, H2, and H3 subtypes have led to pandemics and become established in humans. The detection of two human infections by avian H3N8 viruses in April and May of 2022 raised pandemic concerns. Recent studies have shown the H3N8 viruses were introduced into humans from poultry, although their genesis, prevalence, and transmissibility in mammals have not been fully elucidated. Findings generated from our systematic influenza surveillance showed that this H3N8 influenza virus was first detected in chickens in July 2021 and then disseminated and became established in chickens over wider regions of China. Phylogenetic analyses revealed that the H3 HA and N8 NA were derived from avian viruses prevalent in domestic ducks in the Guangxi-Guangdong region, while all internal genes were from enzootic poultry H9N2 viruses. The novel H3N8 viruses form independent lineages in the glycoprotein gene trees, but their internal genes are mixed with those of H9N2 viruses, indicating continuous gene exchange among these viruses. Experimental infection of ferrets with three chicken H3N8 viruses showed transmission through direct contact and inefficient transmission by airborne exposure. Examination of contemporary human sera detected only very limited antibody cross-reaction to these viruses. The continuing evolution of these viruses in poultry could pose an ongoing pandemic threat. IMPORTANCE A novel H3N8 virus with demonstrated zoonotic potential has emerged and disseminated in chickens in China. It was generated by reassortment between avian H3 and N8 virus(es) and long-term enzootic H9N2 viruses present in southern China. This H3N8 virus has maintained independent H3 and N8 gene lineages but continues to exchange internal genes with other H9N2 viruses to form novel variants. Our experimental studies showed that these H3N8 viruses were transmissible in ferrets, and serological data suggest that the human population lacks effective immunological protection against it. With its wide geographical distribution and continuing evolution in chickens, other spillovers to humans can be expected and might lead to more efficient transmission in humans.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Animais , Humanos , Influenza Humana/epidemiologia , Galinhas , Saúde Pública , Vírus da Influenza A Subtipo H9N2/genética , Filogenia , Furões , China/epidemiologia , Aves Domésticas
5.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762492

RESUMO

Butyrate, produced by gut microbe during dietary fiber fermentation, has anti-inflammatory and antioxidant effects on chronic inflammation diseases, yet it remains to be explored whether butyrate has protective effects against viral infections. Here, we demonstrated that butyrate alleviated tissue injury in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected golden hamsters supplemented with butyrate before and during the infection. Butyrate-treated hamsters showed augmentation of type I interferon (IFN) response and activation of endothelial cells without exaggerated inflammation. In addition, butyrate regulated redox homeostasis by enhancing the activity of superoxide dismutase (SOD) to inhibit excessive apoptotic cell death. Therefore, butyrate exhibited effective prevention against SARS-CoV-2 by upregulating antiviral immune responses and promoting cell survival.

6.
Emerg Infect Dis ; 28(2): 467-470, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35076003

RESUMO

We report surveillance conducted in 217 pestiferous rodents in Hong Kong for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We did not detect SARS-CoV-2 RNA but identified 1 seropositive rodent, suggesting exposure to a virus antigenically similar to SARS-CoV-2. Potential exposure of urban rodents to SARS-CoV-2 cannot be ruled out.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Hong Kong/epidemiologia , Humanos , RNA Viral/genética , Roedores
7.
PLoS Pathog ; 16(7): e1008635, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32702069

RESUMO

Complex exposure histories and immune mediated interactions between influenza strains contribute to the life course of human immunity to influenza. Antibody profiles can be generated by characterizing immune responses to multiple antigenically variant strains, but how these profiles vary across individuals and determine future responses is unclear. We used hemagglutination inhibition titers from 21 H3N2 strains to construct 777 paired antibody profiles from people aged 2 to 86, and developed novel metrics to capture features of these profiles. Total antibody titer per potential influenza exposure increases in early life, then decreases in middle age. Increased titers to one or more strains were seen in 97.8% of participants during a roughly four-year interval, suggesting widespread influenza exposure. While titer changes were seen to all strains, recently circulating strains exhibited the greatest titer rise. Higher pre-existing, homologous titers at baseline reduced the risk of seroconversion to recent strains. After adjusting for homologous titer, we also found an increased frequency of seroconversion against recent strains among those with higher immunity to older previously exposed strains. Including immunity to previously exposures also improved the deviance explained by the models. Our results suggest that a comprehensive quantitative description of immunity encompassing past exposures could lead to improved correlates of risk of influenza infection.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Soroconversão/fisiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
PLoS Pathog ; 16(1): e1008191, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31951644

RESUMO

Avian influenza viruses (AIVs) periodically cross species barriers and infect humans. The likelihood that an AIV will evolve mammalian transmissibility depends on acquiring and selecting mutations during spillover, but data from natural infection is limited. We analyze deep sequencing data from infected humans and domestic ducks in Cambodia to examine how H5N1 viruses evolve during spillover. Overall, viral populations in both species are predominated by low-frequency (<10%) variation shaped by purifying selection and genetic drift, and half of the variants detected within-host are never detected on the H5N1 virus phylogeny. However, we do detect a subset of mutations linked to human receptor binding and replication (PB2 E627K, HA A150V, and HA Q238L) that arose in multiple, independent humans. PB2 E627K and HA A150V were also enriched along phylogenetic branches leading to human infections, suggesting that they are likely human-adaptive. Our data show that H5N1 viruses generate putative human-adapting mutations during natural spillover infection, many of which are detected at >5% frequency within-host. However, short infection times, genetic drift, and purifying selection likely restrict their ability to evolve extensively during a single infection. Applying evolutionary methods to sequence data, we reveal a detailed view of H5N1 virus adaptive potential, and develop a foundation for studying host-adaptation in other zoonotic viruses.


Assuntos
Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/virologia , Influenza Humana/virologia , Animais , Camboja , Patos/virologia , Evolução Molecular , Humanos , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Mutação , Filogenia , Proteínas Virais/genética
9.
Mol Biol Evol ; 37(2): 599-603, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31633786

RESUMO

Phylogenetic trees and data are often stored in incompatible and inconsistent formats. The outputs of software tools that contain trees with analysis findings are often not compatible with each other, making it hard to integrate the results of different analyses in a comparative study. The treeio package is designed to connect phylogenetic tree input and output. It supports extracting phylogenetic trees as well as the outputs of commonly used analytical software. It can link external data to phylogenies and merge tree data obtained from different sources, enabling analyses of phylogeny-associated data from different disciplines in an evolutionary context. Treeio also supports export of a phylogenetic tree with heterogeneous-associated data to a single tree file, including BEAST compatible NEXUS and jtree formats; these facilitate data sharing as well as file format conversion for downstream analysis. The treeio package is designed to work with the tidytree and ggtree packages. Tree data can be processed using the tidy interface with tidytree and visualized by ggtree. The treeio package is released within the Bioconductor and rOpenSci projects. It is available at https://www.bioconductor.org/packages/treeio/.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Internet , Filogenia , Software
10.
Nature ; 522(7554): 102-5, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25762140

RESUMO

Since 2013 the occurrence of human infections by a novel avian H7N9 influenza virus in China has demonstrated the continuing threat posed by zoonotic pathogens. Although the first outbreak wave that was centred on eastern China was seemingly averted, human infections recurred in October 2013 (refs 3-7). It is unclear how the H7N9 virus re-emerged and how it will develop further; potentially it may become a long-term threat to public health. Here we show that H7N9 viruses have spread from eastern to southern China and become persistent in chickens, which has led to the establishment of multiple regionally distinct lineages with different reassortant genotypes. Repeated introductions of viruses from Zhejiang to other provinces and the presence of H7N9 viruses at live poultry markets have fuelled the recurrence of human infections. This rapid expansion of the geographical distribution and genetic diversity of the H7N9 viruses poses a direct challenge to current disease control systems. Our results also suggest that H7N9 viruses have become enzootic in China and may spread beyond the region, following the pattern previously observed with H5N1 and H9N2 influenza viruses.


Assuntos
Galinhas/virologia , Evolução Molecular , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , China/epidemiologia , Ecossistema , Genótipo , Humanos , Subtipo H7N9 do Vírus da Influenza A/classificação , Influenza Aviária/transmissão , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Influenza Humana/virologia , Dados de Sequência Molecular , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Zoonoses/transmissão , Zoonoses/virologia
11.
Mol Biol Evol ; 35(12): 3041-3043, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351396

RESUMO

Ggtree is a comprehensive R package for visualizing and annotating phylogenetic trees with associated data. It can also map and visualize associated external data on phylogenies with two general methods. Method 1 allows external data to be mapped on the tree structure and used as visual characteristic in tree and data visualization. Method 2 plots the data with the tree side by side using different geometric functions after reordering the data based on the tree structure. These two methods integrate data with phylogeny for further exploration and comparison in the evolutionary biology context. Ggtree is available from http://www.bioconductor.org/packages/ggtree.


Assuntos
Técnicas Genéticas , Filogenia , Software
12.
Annu Rev Genomics Hum Genet ; 17: 193-218, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27216777

RESUMO

The emergence and reemergence of rapidly evolving RNA viruses-particularly those responsible for respiratory diseases, such as influenza viruses and coronaviruses-pose a significant threat to global health, including the potential of major pandemics. Importantly, recent advances in high-throughput genome sequencing enable researchers to reveal the genomic diversity of these viral pathogens at much lower cost and with much greater precision than they could before. In particular, the genome sequence data generated allow inferences to be made on the molecular basis of viral emergence, evolution, and spread in human populations in real time. In this review, we introduce recent computational methods that analyze viral genomic data, particularly in combination with metadata such as sampling time, geographic location, and virulence. We then outline the insights these analyses have provided into the fundamental patterns and processes of evolution and emergence in human respiratory RNA viruses, as well as the major challenges in such genomic analyses.


Assuntos
Genoma Humano/genética , Vírus de RNA/genética , RNA/genética , Sistema Respiratório/virologia , Biologia Computacional , Evolução Molecular , Variação Genética , Humanos , Filogenia , Vírus de RNA/patogenicidade
13.
Nature ; 502(7470): 241-4, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23965623

RESUMO

A novel H7N9 influenza A virus first detected in March 2013 has since caused more than 130 human infections in China, resulting in 40 deaths. Preliminary analyses suggest that the virus is a reassortant of H7, N9 and H9N2 avian influenza viruses, and carries some amino acids associated with mammalian receptor binding, raising concerns of a new pandemic. However, neither the source populations of the H7N9 outbreak lineage nor the conditions for its genesis are fully known. Using a combination of active surveillance, screening of virus archives, and evolutionary analyses, here we show that H7 viruses probably transferred from domestic duck to chicken populations in China on at least two independent occasions. We show that the H7 viruses subsequently reassorted with enzootic H9N2 viruses to generate the H7N9 outbreak lineage, and a related previously unrecognized H7N7 lineage. The H7N9 outbreak lineage has spread over a large geographic region and is prevalent in chickens at live poultry markets, which are thought to be the immediate source of human infections. Whether the H7N9 outbreak lineage has, or will, become enzootic in China and neighbouring regions requires further investigation. The discovery here of a related H7N7 influenza virus in chickens that has the ability to infect mammals experimentally, suggests that H7 viruses may pose threats beyond the current outbreak. The continuing prevalence of H7 viruses in poultry could lead to the generation of highly pathogenic variants and further sporadic human infections, with a continued risk of the virus acquiring human-to-human transmissibility.


Assuntos
Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Humana/virologia , Filogenia , Animais , Galinhas , China , Patos , Genes Virais/genética , Humanos , Vírus da Influenza A Subtipo H7N7/classificação , Vírus da Influenza A Subtipo H7N7/genética , Vírus da Influenza A Subtipo H9N2/classificação , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/transmissão , Dados de Sequência Molecular , Vírus Reordenados/classificação , Vírus Reordenados/genética
14.
J Infect Dis ; 217(3): 438-442, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973317

RESUMO

Pregnancy has been associated with severe influenza, an association highlighted during the 2009 pandemic of influenza A(H1N1) virus (A[H1N1]pdm09) infection. To assess the underlying mechanism, we infected pregnant and non-pregnant ferrets with A(H1N1) pdm09 virus. A(H1N1)pdm09-infected pregnant ferrets also had higher levels of inflammatory cytokines in their pulmonary tracts. Systemically, total CD8+ T cell counts and A(H1N1)pdm09-specific B-cell responses in blood were significantly lower in pregnant ferrets. This model predicts that the poorer outcome for pregnant women during the A(H1N1)pdm09 pandemic was due to an elevated level of viral replication and to a cytokine imbalance that led to a less effective immune response.


Assuntos
Citocinas/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/patologia , Complicações Infecciosas na Gravidez/patologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Furões , Pulmão/patologia , Pulmão/virologia , Infecções por Orthomyxoviridae/virologia , Gravidez , Complicações Infecciosas na Gravidez/virologia
15.
Emerg Infect Dis ; 24(6): 965-971, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29774862

RESUMO

The ferret transmission model is extensively used to assess the pandemic potential of emerging influenza viruses, yet experimental conditions and reported results vary among laboratories. Such variation can be a critical consideration when contextualizing results from independent risk-assessment studies of novel and emerging influenza viruses. To streamline interpretation of data generated in different laboratories, we provide a consensus on experimental parameters that define risk-assessment experiments of influenza virus transmissibility, including disclosure of variables known or suspected to contribute to experimental variability in this model, and advocate adoption of more standardized practices. We also discuss current limitations of the ferret transmission model and highlight continued refinements and advances to this model ongoing in laboratories. Understanding, disclosing, and standardizing the critical parameters of ferret transmission studies will improve the comparability and reproducibility of pandemic influenza risk assessment and increase the statistical power and, perhaps, accuracy of this model.


Assuntos
Furões , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Orthomyxoviridae/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Vigilância em Saúde Pública , Medição de Risco
16.
PLoS Biol ; 13(3): e1002082, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25734701

RESUMO

The immunity of a host population against specific influenza A strains can influence a number of important biological processes, from the emergence of new virus strains to the effectiveness of vaccination programmes. However, the development of an individual's long-lived antibody response to influenza A over the course of a lifetime remains poorly understood. Accurately describing this immunological process requires a fundamental understanding of how the mechanisms of boosting and cross-reactivity respond to repeated infections. Establishing the contribution of such mechanisms to antibody titres remains challenging because the aggregate effect of immune responses over a lifetime are rarely observed directly. To uncover the aggregate effect of multiple influenza infections, we developed a mechanistic model capturing both past infections and subsequent antibody responses. We estimated parameters of the model using cross-sectional antibody titres to nine different strains spanning 40 years of circulation of influenza A(H3N2) in southern China. We found that "antigenic seniority" and quickly decaying cross-reactivity were important components of the immune response, suggesting that the order in which individuals were infected with influenza strains shaped observed neutralisation titres to a particular virus. We also obtained estimates of the frequency and age distribution of influenza infection, which indicate that although infections became less frequent as individuals progressed through childhood and young adulthood, they occurred at similar rates for individuals above age 30 y. By establishing what are likely to be important mechanisms driving epochal trends in population immunity, we also identified key directions for future studies. In particular, our results highlight the need for longitudinal samples that are tested against multiple historical strains. This could lead to a better understanding of how, over the course of a lifetime, fast, transient antibody dynamics combine with the longer-term immune responses considered here.


Assuntos
Imunidade Adaptativa , Anticorpos Antivirais/sangue , Memória Imunológica , Influenza Humana/imunologia , Modelos Imunológicos , Adolescente , Adulto , Distribuição por Idade , Idoso , Criança , Pré-Escolar , China/epidemiologia , Proteção Cruzada , Estudos Transversais , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Estudos Longitudinais , Pessoa de Meia-Idade , Fatores de Tempo
17.
Eur Respir J ; 49(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28275173

RESUMO

Since their first isolation in 2013, influenza A/H5N6 viruses have spread amongst poultry across multiple provinces in China and to Laos, Vietnam and Myanmar. So far, there have been 14 human H5N6 infections with 10 fatalities.We investigated the tropism, replication competence and cytokine induction of one human and two avian H5N6 isolates in ex vivo and in vitro cultures derived from the human respiratory tract. Virus tropism and replication were studied in ex vivo cultures of human nasopharynx, bronchus and lung. Induction of cytokines and chemokines was measured in vitro in virus-infected primary human alveolar epithelial cells.Human H5N6 virus replicated more efficiently than highly pathogenic avian influenza (HPAI) H5N1 virus and as efficiently as H1N1pdm in ex vivo human bronchus and lung and was also able to replicate in ex vivo cultures of human nasopharynx. Avian H5N6 viruses replicated less efficiently than H1N1pdm in human bronchial tissues and to similar titres as HPAI H5N1 in the lung. While the human H5N6 virus had affinity for avian-like receptors, the two avian isolates had binding affinity for both avian- and human-like receptors. All three H5N6 viruses were less potent inducers of pro-inflammatory cytokines compared with H5N1 virus.Human H5N6 virus appears better adapted to infect the human airways than H5N1 virus and may pose a significant public health threat.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Sistema Respiratório/virologia , Tropismo Viral , Replicação Viral , Células Epiteliais Alveolares/virologia , Animais , Aves , Células Cultivadas , Quimiocinas/imunologia , Citocinas/imunologia , Humanos , Imunidade Inata , Vírus da Influenza A/patogenicidade , Influenza Aviária/imunologia , Masculino , Pessoa de Meia-Idade , Sistema Respiratório/patologia , Técnicas de Cultura de Tecidos
18.
Proc Biol Sci ; 284(1868)2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29212718

RESUMO

Multiple subtypes of avian influenza (AI) and novel reassortants are frequently isolated from live bird markets (LBMs). However, our understanding of the drivers of persistence of multiple AI subtypes is limited. We propose a stochastic model of AI transmission within an LBM that incorporates market size, turnover rate and the balance of direct versus environmental transmissibility. We investigate the relationship between these factors and the critical community size (CCS) for the persistence of single and multiple AI strains within an LBM. We fit different models of seeding from farms to two-strain surveillance data collected from Shantou, China. For a single strain and plausible estimates for continuous turnover rates and transmissibility, the CCS was approximately 11 800 birds, only a 4.2% increase in this estimate was needed to ensure persistence of the co-infecting strains (two strains in a single host). Precise values of CCS estimates were sensitive to changes in market turnover rate and duration of the latent period. Assuming a gradual daily sell rate of birds the estimated CCS was higher than when an instantaneous selling rate was assumed. We were able to reproduce prevalence dynamics similar to observations from a single market in China with infection seeded every 5-15 days, and a maximum non-seeding duration of 80 days. Our findings suggest that persistence of co-infections is more likely to be owing to sequential infection of single strains rather than ongoing transmission of both strains concurrently. In any given system for a fixed set of ecological and epidemiological conditions, there is an LBM size below which the risk of sustained co-circulation is low and which may suggest a clear policy opportunity to reduce the frequency of influenza co-infection in poultry.


Assuntos
Aves , Vírus da Influenza A/fisiologia , Influenza Aviária/epidemiologia , Animais , China/epidemiologia , Comércio , Influenza Aviária/virologia , Modelos Teóricos , Prevalência
19.
J Virol ; 90(7): 3506-14, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26764002

RESUMO

UNLABELLED: The H9N2 influenza viruses that are enzootic in terrestrial poultry in China pose a persistent pandemic threat to humans. To investigate whether the continuous circulation and adaptation of these viruses in terrestrial poultry increased their infectivity to pigs, we conducted a serological survey in pig herds with H9N2 viruses selected from the aquatic avian gene pool (Y439 lineage) and the enzootic terrestrial poultry viruses (G1 and Y280 lineages). We also compared the infectivity and transmissibility of these viruses in pigs. It was found that more than 15% of the pigs sampled from 2010 to 2012 in southern China were seropositive to either G1 or Y280 lineage viruses, but none of the sera were positive to the H9 viruses from the Y439 lineage. Viruses of the G1 and Y280 lineages were able to infect experimental pigs, with detectable nasal shedding of the viruses and seroconversion, whereas viruses of the Y439 lineage did not cause a productive infection in pigs. Thus, adaptation and prevalence in terrestrial poultry could lead to interspecies transmission of H9N2 viruses from birds to pigs. Although H9N2 viruses do not appear to be continuously transmissible among pigs, repeated introductions of H9 viruses to pigs naturally increase the risk of generating mammalian-adapted or reassorted variants that are potentially infectious to humans. This study highlights the importance of monitoring the activity of H9N2 viruses in terrestrial poultry and pigs. IMPORTANCE: H9N2 subtype of influenza viruses has repeatedly been introduced into mammalian hosts, including humans and pigs, so awareness of their activity and evolution is important for influenza pandemic preparedness. However, since H9N2 viruses usually cause mild or even asymptomatic infections in mammalian hosts, they may be overlooked in influenza surveillance. Here, we found that the H9N2 viruses established in terrestrial poultry had higher infectivity in pigs than those from aquatic birds, which suggests that adaptation of the H9N2 viruses in terrestrial poultry might have increased the infectivity of the virus to mammals. Therefore, monitoring the prevalence and evolution of H9 viruses prevalent in terrestrial birds and conducting risk assessment of their threat to mammals are critical for evaluating the pandemic potential of this virus.


Assuntos
Vírus da Influenza A Subtipo H9N2/patogenicidade , Influenza Aviária/transmissão , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Doenças das Aves Domésticas/transmissão , Doenças dos Suínos/virologia , Animais , Embrião de Galinha , China , Humanos , Influenza Aviária/virologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Aves Domésticas/virologia , Doenças das Aves Domésticas/virologia , Suínos
20.
Nature ; 473(7348): 519-22, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21614079

RESUMO

Swine influenza A viruses (SwIV) cause significant economic losses in animal husbandry as well as instances of human disease and occasionally give rise to human pandemics, including that caused by the H1N1/2009 virus. The lack of systematic and longitudinal influenza surveillance in pigs has hampered attempts to reconstruct the origins of this pandemic. Most existing swine data were derived from opportunistic samples collected from diseased pigs in disparate geographical regions, not from prospective studies in defined locations, hence the evolutionary and transmission dynamics of SwIV are poorly understood. Here we quantify the epidemiological, genetic and antigenic dynamics of SwIV in Hong Kong using a data set of more than 650 SwIV isolates and more than 800 swine sera from 12 years of systematic surveillance in this region, supplemented with data stretching back 34 years. Intercontinental virus movement has led to reassortment and lineage replacement, creating an antigenically and genetically diverse virus population whose dynamics are quantitatively different from those previously observed for human influenza viruses. Our findings indicate that increased antigenic drift is associated with reassortment events and offer insights into the emergence of influenza viruses with epidemic potential in swine and humans.


Assuntos
Evolução Molecular , Vírus da Influenza A Subtipo H1N1/fisiologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Suínos/virologia , Zoonoses/virologia , Animais , Aves/virologia , Feminino , Hong Kong/epidemiologia , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Influenza Humana/virologia , Masculino , Epidemiologia Molecular , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , Vigilância da População , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/fisiologia , Suínos/sangue , Doenças dos Suínos/sangue , Doenças dos Suínos/epidemiologia , Zoonoses/epidemiologia , Zoonoses/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA