RESUMO
Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth.
Assuntos
Desenvolvimento Vegetal , Plantas/metabolismo , Meio Ambiente , Luz , Células Vegetais/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismoRESUMO
All-perovskite tandem solar cells hold the promise of surpassing the efficiency limits of single-junction solar cells1-3; however, until now, the best-performing all-perovskite tandem solar cells have exhibited lower certified efficiency than have single-junction perovskite solar cells4,5. A thick mixed Pb-Sn narrow-bandgap subcell is needed to achieve high photocurrent density in tandem solar cells6, yet this is challenging owing to the short carrier diffusion length within Pb-Sn perovskites. Here we develop ammonium-cation-passivated Pb-Sn perovskites with long diffusion lengths, enabling subcells that have an absorber thickness of approximately 1.2 µm. Molecular dynamics simulations indicate that widely used phenethylammonium cations are only partially adsorbed on the surface defective sites at perovskite crystallization temperatures. The passivator adsorption is predicted to be enhanced using 4-trifluoromethyl-phenylammonium (CF3-PA), which exhibits a stronger perovskite surface-passivator interaction than does phenethylammonium. By adding a small amount of CF3-PA into the precursor solution, we increase the carrier diffusion length within Pb-Sn perovskites twofold, to over 5 µm, and increase the efficiency of Pb-Sn perovskite solar cells to over 22%. We report a certified efficiency of 26.4% in all-perovskite tandem solar cells, which exceeds that of the best-performing single-junction perovskite solar cells. Encapsulated tandem devices retain more than 90% of their initial performance after 600 h of operation at the maximum power point under 1 Sun illumination in ambient conditions.
RESUMO
MicroRNAs (miRNAs) are a class of nonprotein-coding short transcripts that provide a layer of post-transcriptional regulation essential to many plant biological processes. MiR858, which targets the transcripts of MYB transcription factors, can affect a range of secondary metabolic processes. Although miR858 and its 187-nt precursor have been well studied in Arabidopsis (Arabidopsis thaliana), a systematic investigation of miR858 precursors and their functions across plant species is lacking due to a problem in identifying the transcripts that generate this subclass. By re-evaluating the transcript of miR858 and relaxing the length cut-off for identifying hairpins, we found in kiwifruit (Actinidia chinensis) that miR858 has long-loop hairpins (1,100 to 2,100 nt), whose intervening sequences between miRNA generating complementary sites were longer than all previously reported miRNA hairpins. Importantly, these precursors of miR858 containing long-loop hairpins (termed MIR858L) are widespread in seed plants including Arabidopsis, varying between 350 and 5,500 nt. Moreover, we showed that MIR858L has a greater impact on proanthocyanidin and flavonol levels in both Arabidopsis and kiwifruit. We suggest that an active MIR858L-MYB regulatory module appeared in the transition of early land plants to large upright flowering plants, making a key contribution to plant secondary metabolism.
Assuntos
Actinidia , Arabidopsis , Regulação da Expressão Gênica de Plantas , MicroRNAs , RNA de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Actinidia/genética , Actinidia/metabolismo , Arabidopsis/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Sequência de BasesRESUMO
Elucidating enzyme-substrate relationships in posttranslational modification (PTM) networks is crucial for understanding signal transduction pathways but is technically difficult because enzyme-substrate interactions tend to be transient. Here, we demonstrate that TurboID-based proximity labeling (TbPL) effectively and specifically captures the substrates of kinases and phosphatases. TbPL-mass spectrometry (TbPL-MS) identified over 400 proximal proteins of Arabidopsis thaliana BRASSINOSTEROID-INSENSITIVE2 (BIN2), a member of the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family that integrates signaling pathways controlling diverse developmental and acclimation processes. A large portion of the BIN2-proximal proteins showed BIN2-dependent phosphorylation in vivo or in vitro, suggesting that these are BIN2 substrates. Protein-protein interaction network analysis showed that the BIN2-proximal proteins include interactors of BIN2 substrates, revealing a high level of interactions among the BIN2-proximal proteins. Our proteomic analysis establishes the BIN2 signaling network and uncovers BIN2 functions in regulating key cellular processes such as transcription, RNA processing, translation initiation, vesicle trafficking, and cytoskeleton organization. We further discovered significant overlap between the GSK3 phosphorylome and the O-GlcNAcylome, suggesting an evolutionarily ancient relationship between GSK3 and the nutrient-sensing O-glycosylation pathway. Our work presents a powerful method for mapping PTM networks, a large dataset of GSK3 kinase substrates, and important insights into the signaling network that controls key cellular functions underlying plant growth and acclimation.
Assuntos
Proteínas Quinases , Proteômica , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biotina/química , Biotinilação , Brassinosteroides/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteômica/métodos , Transdução de Sinais/fisiologiaRESUMO
Plasmonics enables the manipulation of light beyond the optical diffraction limit1-4 and may therefore confer advantages in applications such as photonic devices5-7, optical cloaking8,9, biochemical sensing10,11 and super-resolution imaging12,13. However, the essential field-confinement capability of plasmonic devices is always accompanied by a parasitic Ohmic loss, which severely reduces their performance. Therefore, plasmonic materials (those with collective oscillations of electrons) with a lower loss than noble metals have long been sought14-16. Here we present stable sodium-based plasmonic devices with state-of-the-art performance at near-infrared wavelengths. We fabricated high-quality sodium films with electron relaxation times as long as 0.42 picoseconds using a thermo-assisted spin-coating process. A direct-waveguide experiment shows that the propagation length of surface plasmon polaritons supported at the sodium-quartz interface can reach 200 micrometres at near-infrared wavelengths. We further demonstrate a room-temperature sodium-based plasmonic nanolaser with a lasing threshold of 140 kilowatts per square centimetre, lower than values previously reported for plasmonic nanolasers at near-infrared wavelengths. These sodium-based plasmonic devices show stable performance under ambient conditions over a period of several months after packaging with epoxy. These results indicate that the performance of plasmonic devices can be greatly improved beyond that of devices using noble metals, with implications for applications in plasmonics, nanophotonics and metamaterials.
RESUMO
Here, a molecular-design and carbon dot-confinement coupling strategy through the pyrolysis of bimetallic complex of diethylenetriamine pentaacetic acid under low-temperature is proposed as a universal approach to dual-metal-atom sites in carbon dots (DMASs-CDs). CDs as the "carbon islands" could block the migration of DMASs across "islands" to achieve dynamic stability. More than twenty DMASs-CDs with specific compositions of DMASs (pairwise combinations among Fe, Co, Ni, Mn, Zn, Cu, and Mo) have been synthesized successfully. Thereafter, high intrinsic activity is observed for the probe reaction of urea oxidation on NiMn-CDs. In situ and ex situ spectroscopic characterization and first-principle calculations unveil that the synergistic effect in NiMn-DMASs could stretch the urea molecule and weaken the N-H bond, endowing NiMn-CDs with a low energy barrier for urea dehydrogenation. Moreover, DMASs-CDs for various target electrochemical reactions, including but not limited to urea oxidation, are realized by optimizing the specific DMAS combination in CDs.
RESUMO
The glycogen synthase kinase-3 (GSK3) family kinases are central cellular regulators highly conserved in all eukaryotes. In Arabidopsis, the GSK3-like kinase BIN2 phosphorylates a range of proteins to control broad developmental processes, and BIN2 is degraded through unknown mechanism upon receptor kinase-mediated brassinosteroid (BR) signaling. Here we identify KIB1 as an F-box E3 ubiquitin ligase that promotes the degradation of BIN2 while blocking its substrate access. Loss-of-function mutations of KIB1 and its homologs abolished BR-induced BIN2 degradation and caused severe BR-insensitive phenotypes. KIB1 directly interacted with BIN2 in a BR-dependent manner and promoted BIN2 ubiquitination in vitro. Expression of an F-box-truncated KIB1 caused BIN2 accumulation but dephosphorylation of its substrate BZR1 and activation of BR responses because KIB1 blocked BIN2 binding to BZR1. Our study demonstrates that KIB1 plays an essential role in BR signaling by inhibiting BIN2 through dual mechanisms of blocking substrate access and promoting degradation.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Brassinosteroides/farmacologia , Proteínas F-Box/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Proteínas Quinases/metabolismo , Esteroides Heterocíclicos/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Domínio Catalítico , Proteínas de Ligação a DNA , Ativação Enzimática , Estabilidade Enzimática , Proteínas F-Box/genética , Genótipo , Quinase 3 da Glicogênio Sintase/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Proteólise , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato , Ubiquitina-Proteína Ligases/genética , UbiquitinaçãoRESUMO
Water, covering over two-thirds of the Earth's surface, holds immense potential for generating clean water, sustainable energy, and metal resources, which are the cornerstones of modern society and future development. It is highly desired to produce these crucial elements through eco-friendly processes with minimal carbon footprints. Interfacial solar evaporation, which utilizes solar energy at the air-liquid interface to facilitate water vaporization and solute separation, offers a promising solution. In this review, we systematically report the recent progress of the cogeneration of clean water and energy/resources including electricity, hydrogen, and metal resources via interfacial solar evaporation. We first gain insight into the energy and mass transport for a typical interfacial solar evaporation system and reveal the residual energy and resources for achieving the cogeneration goal. Then, we summarize the recent advances in materials/device designs for efficient cogeneration. Finally, we discuss the existing challenges and potential opportunities for the further development of this field.
RESUMO
Water-enabled electricity generation (WEG), which harvests energy from the natural water cycle, is a novel strategy for producing green electricity. Taking advantage of the ion sieving effect based on evaporation-induced water flows in charged nanopores, various WEG devices have been developed. Here, we report that a carbonized mushroom produces a record-high current output of up to 96.7 µA, which is attributed to a unique ion adsorption effect combined with an ion sieving effect. Specifically, the natural gradient potential from root to cap in a mushroom caused by tissue differentiation adsorbs different ions, enhancing the traditional ion sieving current. In synergy with the two effects, the mushroom can operate under a broad range of concentrations (0 to 0.6 mol L-1) and represents significant improvements in current, duration, and total charge transfer. These findings reveal the hidden talent of mushrooms as natural materials for WEG, providing inspiration for the development of high-performance WEG devices.
RESUMO
The graphene-all-around (GAA) structure has been verified to grow directly at 380 °C using hot-wire chemical vapor deposition, within the thermal budget of the back end of the line (BEOL). The cobalt (Co) interconnects with the GAA structure have demonstrated a 10.8% increase in current density, a 27% reduction in resistance, and a 36 times longer electromigration lifetime. X-ray photoelectron spectroscopy and density functional theory calculations have revealed the presence of bonding between carbon and Co, which makes the Co atom more stable to resist external forces. The ability of graphene to act as a diffusion barrier in the GAA structure was confirmed through time-dependent dielectric breakdown measurement. The Co interconnect within the GAA structure exhibits enhanced electrical properties and reliability, which indicates compatibility applications as next-generation interconnect materials in CMOS BEOL.
RESUMO
PURPOSE: This study was to construct a nomogram utilizing shear wave elastography and assess its efficacy in detecting clinically significant prostate cancer (csPCa). METHODS: 290 elderly people with suspected PCa who received prostate biopsy and shear wave elastography (SWE) imaging were respectively registered from April 2022 to December 2023. The elderly participants were stratified into two groups: those with csPCa and those without csPCa, which encompassed cases of clinically insignificant prostate cancer (cisPCa) and non-prostate cancer tissue, as determined by pathology findings. The LASSO algorithm, known as the least absolute shrinkage and selection operator, was utilized to identify features. Logistic regression analysis was utilized to establish models. Receiver operating characteristic (ROC) and calibration curves were utilized to evaluate the discriminatory ability of the nomogram. Bootstrap (1000 bootstrap iterations) was employed for internal validation and comparison with two models. A decision curve and a clinical impact curve were employed to assess the clinical usefulness. RESULTS: Our nomogram, which contained Emean, ΔEmean, prostate volume, prostate-specific antigen density (PSAD), and transrectal ultrasound (TRUS), showed better discrimination (AUC = 0.89; 95% CI: 0.83-0.94), compared to the clinical model without SWE parameters (p = 0.0007). Its accuracy, sensitivity and specificity were 0.83, 0.89 and 0.78, respectively. Based on the analysis of decision curve, the thresholds ranged from 5% to 90%. According to our nomogram, biopsying patients at a 20% probability threshold resulted in a 25% reduction in biopsies without missing any csPCa. The clinical impact curve demonstrated that the nomogram's predicted outcome is closer to the observed outcome when the probability threshold reaches 20% or greater. CONCLUSION: Our nomogram demonstrates efficacy in identifying elderly individuals with clinically significant prostate cancer, thereby facilitating informed clinical decision-making based on diagnostic outcomes and potential clinical benefits.
RESUMO
BACKGROUND: Little progress has been made in determining the prognostic factors for children and adolescents with high-grade mature B-cell non-Hodgkin lymphoma (HG B-NHL). Based on the important role of body mass index (BMI) in cancer, this study explored the effect of BMI on the prognosis of patients with HG B-NHL. METHODS: Patients aged <18 years with newly diagnosed HG B-NHL were enrolled. Patients were divided into normal, overweight, obese, and emaciated BMI groups according to the growth criteria for children and adolescents. RESULTS: In total, 435 patients were enrolled in this study. There were 329 (75.6%), 46 (10.6%), 13 (3.0%), and 47 (10.8%) patients stratified into the normal, overweight, obese, and emaciated BMI groups, respectively. The event-free survival and overall survival rates of the entire cohort were 89.3% and 92.4%, respectively. The 5-year event-free survival rate for the patients with obese BMI was worse than those with overweight BMI (76.2% vs. 95.6%, p = .04). The 5-year overall survival rate for the patients with emaciated BMI was worse than those with normal (84.5% vs. 93.1%, p = .04) or overweight BMI (84.5% vs. 97.7%, p = .03). Cox multivariate analysis showed that obese or emaciated BMI at diagnosis was associated with an increased risk of death (p = 0.04; HR, 2.26) and was identified as an independent adverse prognostic factor in pediatric HG B-NHL. CONCLUSION: Obese or emaciated BMI at diagnosis is associated with poor prognosis in pediatric HG B-NHL and can be used for risk stratification.
RESUMO
BACKGROUND & AIMS: The precise pathomechanisms underlying the development of non-alcoholic steatohepatitis (NASH, also known as metabolic dysfunction-associated steatohepatitis [MASH]) remain incompletely understood. In this study, we investigated the potential role of EF-hand domain family member D2 (EFHD2), a novel molecule specific to immune cells, in the pathogenesis of NASH. METHODS: Hepatic EFHD2 expression was characterized in patients with NASH and two diet-induced NASH mouse models. Single-cell RNA sequencing (scRNA-seq) and double-immunohistochemistry were employed to explore EFHD2 expression patterns in NASH livers. The effects of global and myeloid-specific EFHD2 deletion on NASH and NASH-related hepatocellular carcinoma were assessed. Molecular mechanisms underlying EFHD2 function were investigated, while chemical and genetic investigations were performed to assess its potential as a therapeutic target. RESULTS: EFHD2 expression was significantly elevated in hepatic macrophages/monocytes in both patients with NASH and mice. Deletion of EFHD2, either globally or specifically in myeloid cells, improved hepatic steatosis, reduced immune cell infiltration, inhibited lipid peroxidation-induced ferroptosis, and attenuated fibrosis in NASH. Additionally, it hindered the development of NASH-related hepatocellular carcinoma. Specifically, deletion of myeloid EFHD2 prevented the replacement of TIM4+ resident Kupffer cells by infiltrated monocytes and reversed the decreases in patrolling monocytes and CD4+/CD8+ T cell ratio in NASH. Mechanistically, our investigation revealed that EFHD2 in myeloid cells interacts with cytosolic YWHAZ (14-3-3ζ), facilitating the translocation of IFNγR2 (interferon-γ receptor-2) onto the plasma membrane. This interaction mediates interferon-γ signaling, which triggers immune and inflammatory responses in macrophages during NASH. Finally, a novel stapled α-helical peptide targeting EFHD2 was shown to be effective in protecting against NASH pathology in mice. CONCLUSION: Our study reveals a pivotal immunomodulatory and inflammatory role of EFHD2 in NASH, underscoring EFHD2 as a promising druggable target for NASH treatment. IMPACT AND IMPLICATIONS: Non-alcoholic steatohepatitis (NASH) represents an advanced stage of non-alcoholic fatty liver disease (NAFLD); however, not all patients with NAFLD progress to NASH. A key challenge is identifying the factors that trigger inflammation, which propels the transition from simple fatty liver to NASH. Our research pinpointed EFHD2 as a pivotal driver of NASH, orchestrating the over-activation of interferon-γ signaling within the liver during NASH progression. A stapled peptide designed to target EFHD2 exhibited therapeutic promise in NASH mice. These findings support the potential of EFHD2 as a therapeutic target in NASH.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/etiologia , Modelos Animais de Doenças , Ferroptose/efeitos dos fármacos , Interferon gama/metabolismo , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/imunologiaRESUMO
Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems.
RESUMO
The concentration of dopamine (DA) and tyrosine (Tyr) reflects the condition of patients with Parkinson's disease, whereas moderate paracetamol (PA) can help relieve their pain. Therefore, real-time measurements of these bioanalytes have important clinical implications for patients with Parkinson's disease. However, previous sensors suffer from either limited sensitivity or complex fabrication and integration processes. This work introduces a simple and cost-effective method to prepare high-quality, flexible titanium dioxide (TiO2) thin films with highly reactive (001)-facets. The as-fabricated TiO2 film supported by a carbon cloth electrode (i.e., TiO2-CC) allows excellent electrochemical specificity and sensitivity to DA (1.390 µA µM-1 cm-2), Tyr (0.126 µA µM-1 cm-2), and PA (0.0841 µA µM-1 cm-2). More importantly, accurate DA concentration in varied pH conditions can be obtained by decoupling them within a single differential pulse voltammetry measurement without additional sensing units. The TiO2-CC electrochemical sensor can be integrated into a smart diaper to detect the trace amount of DA or an integrated skin-interfaced patch with microfluidic sampling and wireless transmission units for real-time detection of the sweat Try and PA concentration. The wearable sensor based on TiO2-CC prepared by facile manufacturing methods holds great potential in the daily health monitoring and care of patients with neurological disorders.
Assuntos
Acetaminofen , Dopamina , Técnicas Eletroquímicas , Titânio , Tirosina , Dispositivos Eletrônicos Vestíveis , Titânio/química , Acetaminofen/análise , Dopamina/análise , Tirosina/química , Técnicas Eletroquímicas/métodos , Humanos , Eletrodos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentaçãoRESUMO
A frozen-temperature (below -28 °C) laser tuning way is developed to optimize metal halide perovskite (MHP)'s stability and opto-electronic properties, for emitter, photovoltaic and detector applications. Here freezing can adjust the competitive laser irradiation effects between damaging and annealing/repairing. And the ligand shells on MHP surface, which are widely present for many MHP materials, can be frozen and act as transparent solid templates for MHP's re-crystallization/re-growth during the laser tuning. With model samples of different types of CsPbBr3 nanocube arrays,an attempt is made to turn the dominant exposure facet from low-energy [100] facet to high-energy [111], [-211], [113] and [210] ones respectively; selectively removing the surface impurities and defects of CsPbBr3 nanocubes to enhance the irradiation durability by 101 times; and quickly (tens of seconds) modifying a Ruddlesden-Popper (RP) boundary into another type of boundary like twinning, and so on. The laser tuning mechanism is revealed by an innovative in situ cryo-transmission electron microscope (cryo-TEM) exploration at atomic resolution.
RESUMO
Solving the Hamiltonian of a system yields the energy dispersion and eigenstates. The geometric phase of the eigenstates generates many novel effects and potential applications. However, the geometric properties of the energy dispersion go unheeded. Here, we provide geometric insight into energy dispersion and introduce a geometric amplitude, namely, the geometric density of states (GDOS) determined by the Riemann curvature of the constant-energy contour. The geometric amplitude should accompany various local responses, which are generally formulated by the real-space Green's function. Under the stationary phase approximation, the GDOS simplifies the Green's function into its ultimate form. In particular, the amplitude factor embodies the spinor phase information of the eigenstates, favoring the extraction of the spin texture for topological surface states under an in-plane magnetic field through spin-polarized STM measurements. This work opens a new avenue for exploring the geometric properties of electronic structures and excavates the unexplored potential of spin-polarized STM measurements to probe the spinor phase information of eigenstates from their amplitudes.
RESUMO
The catalytic mechanisms of nitrogen reduction reaction (NRR) on the pristine and Co/α-MoC(001) surfaces were explored by density functional theory calculations. The results show that the preferred pathway is that a direct N≡N cleavage occurs first, followed by continuous hydrogenations. The production of second NH3 molecule is identified as the rate-limiting step on both systems with kinetic barriers of 1.5 and 2.0â eV, respectively, indicating that N2 -to-NH3 transformation on bimetallic surface is more likely to occur. The two components of the bimetallic center play different roles during NRR process, in which Co atom does not directly participate in the binding of intermediates, but primarily serves as a reservoir of H atoms. This special synergy makes Co/α-MoC(001) have superior activity for ammonia synthesis. The introduction of Co not only facilitates N2 dissociation, but also accelerates the migration of H atom due to the antibonding characteristic of Co-H bond. This study offers a facile strategy for the rational design and development of efficient catalysts for ammonia synthesis and other reactions involving the hydrogenation processes.
RESUMO
In this study, a novel array electrospinning collector was devised to generate two distinct regenerated silk fibroin (SF) fibrous membranes: ordered and disordered. Leveraging electrostatic forces during the electrospinning process allowed precise control over the orientation of SF fiber, resulting in the creation of membranes comprising both aligned and randomly arranged fiber layers. This innovative approach resulted in the development of large-area membranes featuring exceptional stability due to their alternating patterned structure, achievable through expansion using the collector, and improving the aligned fiber membrane mechanical properties. The study delved into exploring the potential of these membranes in augmenting wound healing efficiency. Conducting in vitro toxicity assays with adipose tissue-derived mesenchymal stem cells (AD-MSCs) and normal human dermal fibroblasts (NHDFs) confirmed the biocompatibility of the SF membranes. We use dual perspectives on exploring the effects of different conditioned mediums produced by cells and structural cues of materials on NHDFs migration. The nanofibers providing the microenvironment can directly guide NHDFs migration and also affect the AD-MSCs and NHDFs paracrine effects, which can improve the chemotaxis of NHDFs migration. The ordered membrane, in particular, exhibited pronounced effectiveness in guiding directional cell migration. This research underscores the revelation that customizable microenvironments facilitated by SF membranes optimize the paracrine products of mesenchymal stem cells and offer valuable physical cues, presenting novel prospects for enhancing wound healing efficiency.
Assuntos
Fibroínas , Células-Tronco Mesenquimais , Cicatrização , Fibroínas/química , Humanos , Células-Tronco Mesenquimais/citologia , Fibroblastos/citologia , Células Cultivadas , Animais , Nanofibras/química , Alicerces Teciduais/química , Bombyx/químicaRESUMO
BACKGROUND: This study investigates the clinical characteristics and outcomes of pediatric patients with rheumatic diseases infected with COVID-19 in China. METHODS: We conducted a retrospective analysis of pediatric patients with rheumatic diseases who contracted COVID-19. Data were collected via a comprehensive questionnaire with a 14-day follow-up. Multivariable logistic regression was used to assess severe outcomes, and network analyses evaluated symptom correlations. RESULTS: A total of 1070 cases were collected. Fever (88.05%) and cough (62.75%) were the most common symptoms. Cough, nasal congestion, and runny nose exhibited a stronger correlation with each other. A higher incidence of fever reduced the incidence of two single symptoms (nasal congestion [r = -0.833], runny nose [r = -0.762]). Vaccinated children showed a shorter time to negative COVID-19 conversion (7.21 days vs. 7.63 days, p < 0.05) and lower hospitalization rates (p = 0.025). Prolonged symptom duration was associated with older age (OR: 1.07 [1.04-1.11]; p < 0.001) and systemic lupus erythematosus (OR: 1.47 [1.01-2.12]; p = 0.046). CONCLUSIONS: Pediatric patients with rheumatic diseases exhibited a wide range of clinical symptoms after COVID-19 infection. The infection generally did not lead to severe outcomes in this study. COVID-19 vaccination was associated with reduced hospitalization risk and expediting the time to negativity for virus. IMPACTS: This manuscript demonstrates a comprehensive analysis of the clinical characteristics and outcomes of COVID-19 infection in pediatric patients with rheumatic diseases in China. It provides critical insights into the specific challenges faced by this vulnerable population and offers practical recommendations for improving patient management during periods of increased infectious risk.