RESUMO
BACKGROUND The study aimed to explore the genetic association of Fc receptor-like 5 (FCRL5) gene variants (rs6427384 and rs6692977) with ankylosing spondylitis risk in Chinese Han population. MATERIAL AND METHODS Genotyping for FCRL5 gene variations rs6427384 and rs6692977 was implemented among 130 ankylosing spondylitis cases and 135 healthy persons, through polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method. Frequency dissimilarity for 2 polymorphisms was compared between 2 groups using chi-square test. The association strength of FCRL5 gene polymorphism with ankylosing spondylitis risk was estimated by odds ratios with 95% confidence intervals. RESULTS The frequencies of rs6427384 CC genotype and C allele were significantly lower in the case group than that in the control group (P<0.05), which suggested that C allele of rs6427384 polymorphism might offer protection against ankylosing spondylitis onset. Whereas only 2 genotypes of rs6692977 were detected in the control group, and no significant association was found with ankylosing spondylitis susceptibility. CONCLUSIONS FCRL5 gene polymorphism rs6427384 was correlated to ankylosing spondylitis occurrence among Chinese Han population, while rs6692977 was not.
Assuntos
Predisposição Genética para Doença/genética , Receptores Fc/genética , Espondilite Anquilosante/genética , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Fatores de RiscoRESUMO
To resolve the problems of bacterial infections and the low efficiency of osteogenesis of implanted titanium alloys in clinical dental and bone therapy, we developed a bifunctional titanium alloy (Ti) with a nano-hydroxyapatite (HA) coating (HBD + BMP/HA-Ti), which enables the sustained release of the natural antimicrobial peptide human ß-defensin 3 (HBD-3) and bone morphogenetic protein-2 (BMP-2). Due to the poriferous nano-sized structure of the HA coating with a 20-30 µm thickness, the HBD + BMP/HA-Ti material had a high encapsulation efficiency (>74%) and exhibited synchronized slow release of HBD-3 and BMP-2. In an antibacterial test, HBD + BMP/HA-Ti prevented the growth of bacteria in an inoculated medium, and its surface remained free from viable bacteria after a continuous incubation with Gram-negative and Gram-positive strains for 7 days. Furthermore, good adhesion, proliferation and osteogenic differentiation of hBMSCs in contact with HBD + BMP/HA-Ti were achieved in 7 days. Therefore, the bifunctional titanium alloy HBD + BMP/HA-Ti has a great potential for eventual applications in the protection of implants against bacteria in the orthopaedic and dental clinic.