RESUMO
BACKGROUND: The development of postpartum depression has been linked to fluctuations in the levels of neurotransmitters in the human body, such as 5-hydroxytryptamine (5-HT), dopamine (DA), noradrenaline (Norepinephrine, NE), and brain derived neurotrophic factor (BDNF). Research has indicated that the antidepressant effect of esketamine are mediated by monoamine transmitters and neurotrophic factors. Therefore, we postulate that intravenous administration of esketamine in patients with postpartum depression may alter the serum concentrations of these neurotransmitters. METHODS: Three hundred fifteen patients with postpartum depression were selected and divided into two groups based on randomized numerical expression: esketamine (E) group (0. 25 mg/kg esketamine) and control (C) group (a same volume of 0.9% saline), all the drugs were pumped for 40 min. After the end of drug pumping, all patients were continuously observed for 2 h. Changes in serum levels of 5-HT, DA, NE, BDNF were recorded before drug administration and on the 3rd day after drug administration. The scores of Edinburgh Postnatal Depression Scale (EPDS) were calculated before drug administration, and on the 3rd day and on the 30th day after drug administration. Dizziness, headache, nausea, vomiting, drowsiness, and feeling of detachment occurred were recorded within 2 h after drug administration. RESULTS: Before drug administration, the serum concentrations of 5-HT,DA,BDNF,NE in Group E and Group C were namely (0. 91 ± 0. 19 vs. 0. 98 ± 0. 21, P = 0. 181), (2. 38 ± 0. 35 vs. 2. 32 ± 0. 32, P = 0. 491), (3. 07 ± 0. 89 vs 3. 02 ± 0. 88, P = 0. 828), (39. 79 ± 7. 78 vs 41. 34 ± 10. 03, P = 0. 506). On the third day post-medication, the serum concentrations of 5-HT,DA,BDNF,NE in Group E and Group C were namely (1. 42 ± 0. 35 vs. 0. 96 ± 0. 24, P < 0. 001), (3. 99 ± 0. 17 vs. 2. 41 ± 0. 28, P < 0. 001),(5. 45 ± 0. 81 vs 3. 22 ± 0. 76, P < 0. 001),(44. 36 ± 9. 98 vs 40. 69 ± 11. 75, P = 0. 198). Before medication, the EPDS scores were (16. 15 ± 3. 02 vs 17. 85 ± 3. 89, P = 0. 064). on the third day after medication, the Group E had significantly reduced scores (12. 98 ± 2. 39 vs 16. 73 ± 3. 52, P < 0. 001). On the 30rd day after medication, EPDS scores between the two groups were (16. 34 ± 3. 43 vs 16. 91 ± 4. 02, p = 0. 203). Within 2 h of medication, the rate of adverse events was similar between the two groups. CONCLUSIONS: Small doses of esketamine can increase the serum concentration of 5-HT,DA,BDNF, and in the short term, decrease EPDS scores, and improve postpartum depressive symptoms. TRIAL REGISTRATION: Retrospectively registered in the Chinese Clinical Trial Registry (ChiCTR2300078343, 2023/12/05).
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão Pós-Parto , Ketamina , Neurotransmissores , Serotonina , Humanos , Feminino , Ketamina/administração & dosagem , Ketamina/farmacologia , Depressão Pós-Parto/tratamento farmacológico , Depressão Pós-Parto/sangue , Adulto , Neurotransmissores/sangue , Fator Neurotrófico Derivado do Encéfalo/sangue , Serotonina/sangue , Antidepressivos/administração & dosagem , Antidepressivos/uso terapêutico , Antidepressivos/farmacologia , Norepinefrina/sangue , Dopamina/sangueRESUMO
The formation of hypertrophic scar and keloid is considered to be a very complex pathological process. Our previous studies have shown that miR-15a-5p is an important miRNA in HTS tissues, and its expression level is significantly increased. Therefore, the potential mechanism of action of miR-15a-5p in scarring arouses our interest. This study preliminarily investigated the expression level of miR-15a-5p in HTS tissue and normal skin tissue and further explored the molecular mechanism. The results of this study once again confirmed that the expression level of miR-15a-5p was increased in HTS tissues and cells, and the closely related mRNA and protein levels of MyD88 and TGF-ß were also highly expressed. The relative expression levels of fibrosis-related indicators in HTsFb cells were up-regulated, such as collagen-â , collagen-III and α-SMA. We constructed the HTS cell model and BALB/c nude animal model, and down-regulating miR-15a-5p, the HTsFb cells proliferation was inhibited, and qRT-PCR results showed that the fibrosis index mRNA was also reduced, and significantly reduce the pathological state of scar tissue. In conclusion, miR-15a-5p may participate in the formation and development of HTS through TLR/MyD88 signaling pathway and TGF-ß1 signaling pathway.
Assuntos
Cicatriz Hipertrófica , Queloide , MicroRNAs , Animais , Camundongos , Cicatriz Hipertrófica/genética , Queloide/genética , Receptor 4 Toll-Like/genética , Fator 88 de Diferenciação Mieloide/genética , Proteínas Adaptadoras de Transdução de Sinal , Camundongos Nus , MicroRNAs/genética , RNA Mensageiro/genéticaRESUMO
Dysfunctions of gene transcription and translation in the nociceptive pathways play the critical role in development and maintenance of chronic pain. Circular RNAs (circRNAs) are emerging as new players in regulation of gene expression, but whether and how circRNAs are involved in chronic pain remain elusive. We showed here that complete Freund's adjuvant-induced chronic inflammation pain significantly increased circRNA-Filip1l (filamin A interacting protein 1-like) expression in spinal neurons of mice. Blockage of this increase attenuated complete Freund's adjuvant-induced nociceptive behaviors, and overexpression of spinal circRNA-Filip1l in naive mice mimicked the nociceptive behaviors as evidenced by decreased thermal and mechanical nociceptive threshold. Furthermore, we found that mature circRNA-Filip1l expression was negatively regulated by miRNA-1224 via binding and splicing of precursor of circRNA-Filip1l (pre-circRNA-Filip1l) in the Argonaute-2 (Ago2)-dependent manner. Increase of spinal circRNA-Filip1l expression resulted from the decrease of miRNA-1224 expression under chronic inflammation pain state. miRNA-1224 knockdown or Ago2 overexpression induced nociceptive behaviors in naive mice, which was prevented by the knockdown of spinal circRNA-Filip1l. Finally, we demonstrated that a ubiquitin protein ligase E3 component n-recognin 5 (Ubr5), validated as a target of circRNA-Filip1l, plays a pivotal role in regulation of nociception by spinal circRNA-Filip1l. These data suggest that miRNA-1224-mediated and Ago2-dependent modulation of spinal circRNA-Filip1l expression regulates nociception via targeting Ubr5, revealing a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.SIGNIFICANCE STATEMENT circRNAs are emerging as new players in regulation of gene expression. Here, we found that the increase of circRNA-Filip1l mediated by miRNA-1224 in an Ago2-dependent way in the spinal cord is involved in regulation of nociception via targeting Ubr5 Our study reveals a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.
Assuntos
Proteínas Argonautas/genética , Dor Crônica/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Nociceptividade/fisiologia , RNA Circular/genética , Ubiquitina-Proteína Ligases/genética , Animais , Epigênese Genética , Inflamação/complicações , Inflamação/genética , Masculino , Camundongos , Medula Espinal/metabolismoRESUMO
DNA 5-hydroxylmethylcytosine (5hmC) catalyzed by ten-eleven translocation methylcytosine dioxygenase (TET) occurs abundantly in neurons of mammals. However, the in vivo causal link between TET dysregulation and nociceptive modulation has not been established. Here, we found that spinal TET1 and TET3 were significantly increased in the model of formalin-induced acute inflammatory pain, which was accompanied with the augment of genome-wide 5hmC content in spinal cord. Knockdown of spinal TET1 or TET3 alleviated the formalin-induced nociceptive behavior and overexpression of spinal TET1 or TET3 in naive mice produced pain-like behavior as evidenced by decreased thermal pain threshold. Furthermore, we found that TET1 or TET3 regulated the nociceptive behavior by targeting microRNA-365-3p (miR-365-3p). Formalin increased 5hmC in the miR-365-3p promoter, which was inhibited by knockdown of TET1 or TET3 and mimicked by overexpression of TET1 or TET3 in naive mice. Nociceptive behavior induced by formalin or overexpression of spinal TET1 or TET3 could be prevented by downregulation of miR-365-3p, and mimicked by overexpression of spinal miR-365-3p. Finally, we demonstrated that a potassium channel, voltage-gated eag-related subfamily H member 2 (Kcnh2), validated as a target of miR-365-3p, played a critical role in nociceptive modulation by spinal TET or miR-365-3p. Together, we concluded that TET-mediated hydroxymethylation of miR-365-3p regulates nociceptive behavior via Kcnh2. SIGNIFICANCE STATEMENT: Mounting evidence indicates that epigenetic modifications in the nociceptive pathway contribute to pain processes and analgesia response. Here, we found that the increase of 5hmC content mediated by TET1 or TET3 in miR-365-3p promoter in the spinal cord is involved in nociceptive modulation through targeting a potassium channel, Kcnh2. Our study reveals a new epigenetic mechanism underlying nociceptive information processing, which may be a novel target for development of antinociceptive drugs.
Assuntos
Citosina/análogos & derivados , Metilação de DNA/genética , MicroRNAs/metabolismo , Dor/fisiopatologia , 5-Metilcitosina/análogos & derivados , Animais , Citosina/metabolismo , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Epigênese Genética , Formaldeído/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , MicroRNAs/genética , Dor/induzido quimicamente , Dor/patologia , Fosfopiruvato Hidratase/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Medula Espinal/metabolismo , Fatores de TempoRESUMO
BACKGROUND: Ten-eleven translocation methylcytosine dioxygenase converts 5-methylcytosine in DNA to 5-hydroxymethylcytosine, which plays an important role in gene transcription. Although 5-hydroxymethylcytosine is enriched in mammalian neurons, its regulatory function in nociceptive information processing is unknown. METHODS: The global levels of 5-hydroxymethylcytosine and ten-eleven translocation methylcytosine dioxygenase were measured in spinal cords in mice treated with complete Freund's adjuvant. Immunoblotting, immunohistochemistry, and behavioral tests were used to explore the downstream ten-eleven translocation methylcytosine dioxygenase-dependent signaling pathway. RESULTS: Complete Freund's adjuvant-induced nociception increased the mean levels (± SD) of spinal 5-hydroxymethylcytosine (178 ± 34 vs. 100 ± 21; P = 0.0019), ten-eleven translocation methylcytosine dioxygenase-1 (0.52 ± 0.11 vs. 0.36 ± 0.064; P = 0.0088), and ten-eleven translocation methylcytosine dioxygenase-3 (0.61 ± 0.13 vs. 0.39 ± 0.08; P = 0.0083) compared with levels in control mice (n = 6/group). The knockdown of ten-eleven translocation methylcytosine dioxygenase-1 or ten-eleven translocation methylcytosine dioxygenase-3 alleviated thermal hyperalgesia and mechanical allodynia, whereas overexpression cytosinethem in naïve mice (n = 6/group). Down-regulation of spinal ten-eleven translocation methylcytosine dioxygenase-1 and ten-eleven translocation methylcytosine dioxygenase-3 also reversed the increases in Fos expression (123 ± 26 vs. 294 ± 6; P = 0.0031; and 140 ± 21 vs. 294 ± 60; P = 0.0043, respectively; n = 6/group), 5-hydroxymethylcytosine levels in the Stat3 promoter (75 ± 16.1 vs. 156 ± 28.9; P = 0.0043; and 91 ± 19.1 vs. 156 ± 28.9; P = 0.0066, respectively; n = 5/group), and consequent Stat3 expression (93 ± 19.6 vs. 137 ± 27.5; P = 0.035; and 72 ± 15.2 vs. 137 ± 27.5; P = 0.0028, respectively; n = 5/group) in complete Freund's adjuvant-treated mice. CONCLUSIONS: This study reveals a novel epigenetic mechanism for ten-eleven translocation methylcytosine dioxygenase-1 and ten-eleven translocation methylcytosine dioxygenase-3 in the modulation of spinal nociceptive information via targeting of Stat3.
Assuntos
Citosina/análogos & derivados , Citosina/metabolismo , Metilação de DNA/fisiologia , Dioxigenases/metabolismo , Inflamação/fisiopatologia , Dor Nociceptiva/fisiopatologia , 5-Metilcitosina/metabolismo , Animais , Dor Crônica/fisiopatologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Medula Espinal/fisiopatologiaRESUMO
Emerging evidence has shown that miRNA-mediated gene expression modulation contributes to chronic pain, but its functional regulatory mechanism remains unknown. Here, we found that complete Freund's adjuvant (CFA)-induced chronic inflammation pain significantly reduced miRNA-219 (miR-219) expression in mice spinal neurons. Furthermore, the expression of spinal CaMKIIγ, an experimentally validated target of miR-219, was increased in CFA mice. Overexpression of spinal miR-219 prevented and reversed thermal hyperalgesia and mechanical allodynia and spinal neuronal sensitization induced by CFA. Concurrently, increased expression of spinal CaMKIIγ was reversed by miR-219 overexpression. Downregulation of spinal miR-219 in naive mice induced pain-responsive behaviors and increased p-NMDAR1 expression, which could be inhibited by knockdown of CaMKIIγ. Bisulfite sequencing showed that CFA induced the hypermethylation of CpG islands in the miR-219 promoter. Treatment with demethylation agent 5'-aza-2'-deoxycytidine markedly attenuated pain behavior and spinal neuronal sensitization, which was accompanied with the increase of spinal miR-219 and decrease of CaMKIIγ expression. Together, we conclude that methylation-mediated epigenetic modification of spinal miR-219 expression regulates chronic inflammatory pain by targeting CaMKIIγ.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dor Crônica , Epigênese Genética , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Medula Espinal/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Dor Crônica/etiologia , Dor Crônica/metabolismo , Dor Crônica/patologia , Ilhas de CpG/genética , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Adjuvante de Freund/efeitos adversos , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos , MicroRNAs/genética , Neurônios/efeitos dos fármacos , Medição da Dor , RNA Interferente Pequeno/farmacologia , Medula Espinal/patologia , Transdução GenéticaRESUMO
Facial aging involves a continuous sequence of complex, interrelated events that impact numerous facial tissues. The aim of the study was to elucidate the casual relationship between circulating micronutrients and risk of facial aging. A two-sample Mendelian randomization analysis was performed using genetic data from genome-wide association studies. The inverse-variance weighted method is used for causal effect estimation, and additional tools such as Mendelian randomization-Egger, weighted median, simple mode, and weighted mode were used to refine the analysis. We conducted an in-depth examination of the correlation between several micronutrient blood levels and the risk of facial aging, and identified 3 key micronutrients (selenium, carotene, and iron) that may have a significant impact on skin health. Inverse-variance weighted results indicate that selenium levels were positively correlated with the risk of facial aging (odds ratio [OR] 1.005, Pâ =â .027), while a negative causal effect of carotene (OR 0.979, Pâ =â .024) and iron (OR 0.976, Pâ =â .009) on age-related facial alterations was observed. This study offers a new and insightful perspective on the current understanding of antiaging strategies, particularly the importance of appropriate consumption of essential micronutrients to maintain healthy skin condition.
Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Micronutrientes , Selênio , Envelhecimento da Pele , Humanos , Micronutrientes/sangue , Envelhecimento da Pele/genética , Selênio/sangue , Face , Carotenoides/sangue , Ferro/sangue , Envelhecimento/sangue , Envelhecimento/genética , Fatores de RiscoRESUMO
A dramatic reduction in mortality among people living with HIV (PLWH) has been achieved during the modern antiretroviral therapy (ART) era. However, ART does not restore gut barrier function even after long-term viral suppression, allowing microbial products to enter the systemic blood circulation and induce chronic immune activation. In PLWH, a chronic state of systemic inflammation exists and persists, which increases the risk of development of inflammation-associated non-AIDS comorbidities such as metabolic disorders, cardiovascular diseases, and cancer. Clostridium butyricum is a human butyrate-producing symbiont present in the gut microbiome. Convergent evidence has demonstrated favorable effects of C. butyricum for gastrointestinal health, including maintenance of the structural and functional integrity of the gut barrier, inhibition of pathogenic bacteria within the intestine, and reduction of microbial translocation. Moreover, C. butyricum supplementation has been observed to have a positive effect on various inflammation-related diseases such as diabetes, ulcerative colitis, and cancer, which are also recognized as non-AIDS comorbidities associated with epithelial gut damage. There is currently scant published research in the literature, focusing on the influence of C. butyricum in the gut of PLWH. In this hypothesis review, we speculate the use of C. butyricum as a probiotic oral supplementation may well emerge as a potential future synergistic adjunctive strategy in PLWH, in tandem with ART, to restore and consolidate intestinal barrier integrity, repair the leaky gut, prevent microbial translocation from the gut, and reduce both gut and systemic inflammation, with the ultimate objective of decreasing the risk for development of non-AIDS comorbidities in PLWH.
Assuntos
Clostridium butyricum , Microbioma Gastrointestinal , Infecções por HIV , Probióticos , Humanos , Clostridium butyricum/fisiologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Probióticos/administração & dosagem , ComorbidadeRESUMO
p15INK4b (cyclin-dependent kinase inhibitor 2B, CDKN2B, p15), a cyclin-dependent kinase inhibitor (CKI) belonging to the INK4 family, plays an important role in hematopoiesis. Its expression level was positively related to the blockage effects of RUNX1b at the early stage. Experiments using human embryonic stem cell (hESC) lines with inducible p15 expression suggested that p15 overexpression can significantly decrease the proportion of KDR+ cells in S and G2-M stages 4 days after induction from day 0. Moreover, p15 overexpression from the early stage can decrease production of CD34highCD43- cells and their derivative populations, but not CD34lowCD43- cells. These effects were weakened if induction was delayed and disappeared if induction started after day 6. All these effects were counteracted by inhibition of TGF-ß signaling. TGF-ß1 stimulation elicited similar effects as p15 overexpression. RUNX1 overexpression and activation of the TGF-ß signaling pathway upregulate the expression of p15, which is partially responsible for blockade of hematopoiesis and relevant to a change in the cell cycle status. However, it is possible that other mechanisms are involved in the regulation of hematopoiesis.
Assuntos
Proteínas de Ciclo Celular , Subunidade alfa 2 de Fator de Ligação ao Core , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Hematopoese , Humanos , Fator de Crescimento Transformador beta/metabolismo , Proteínas Supressoras de TumorRESUMO
Deficiency of P18 can significantly improve the self-renewal potential of hematopoietic stem cells (HSC) and the success of long-term engraftment. However, the effects of P18 overexpression, which is involved in the inhibitory effects of RUNX1b at the early stage of hematopoiesis, have not been examined in detail. In this study, we established inducible P18/hESC lines and monitored the effects of P18 overexpression on hematopoietic differentiation. Induction of P18 from day 0 (D0) dramatically decreased production of CD34highCD43- cells and derivative populations, but not that of CD34lowCD43- cells, changed the cell cycle status and apoptosis of KDR+ cells and downregulated the key hematopoietic genes at D4, which might cause the severe blockage of hematopoietic differentiation at the early stage. By contrast, induction of P18 from D10 dramatically increased production of classic hematopoietic populations and changed the cell cycle status and apoptosis of CD45+ cells at D14. These effects can be counteracted by inhibition of TGF-ß or NF-κB signaling respectively. This is the first evidence that P18 promotes hematopoiesis, a rare property among cyclin-dependent kinase inhibitors (CKIs).
Assuntos
Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p18/biossíntese , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p18/genética , Humanos , NF-kappa B/genética , Fator de Crescimento Transformador beta/genéticaRESUMO
BACKGROUND: The HOX genes are master regulators of embryogenesis that are also involved in hematopoiesis. HOXA9 belongs to a cluster of HOX genes that play extensively studied roles in hematopoiesis and leukemogenesis. METHODS: We established HOXA9-inducible human embryonic stem cells (HOXA9/hESCs) with normal pluripotency and potential for hematopoiesis, which could be used to analyze gene function with high accuracy. HOXA9/hESCs co-cultured with aorta-gonad-mesonephros-derived stromal cells (AGM-S3) were induced to overexpress HOXA9 with doxycycline (DOX) at various times after hematopoiesis started and then subjected to flow cytometry. RESULTS: Induction of HOXA9 from Day 4 (D4) or later notably promoted hematopoiesis and also increased the production of CD34+ cells and derived populations. The potential for myelogenesis was significantly elevated while the potential for erythrogenesis was significantly reduced. At D14, a significant promotion of S phase was observed in green fluorescent protein positive (GFP+) cells overexpressing HOXA9. NF-κB signaling was also up-regulated at D14 following induction of HOXA9 on D4. All of these effects could be counteracted by addition of an NF-κB inhibitor or siRNA against NFKB1 along with DOX. CONCLUSIONS: Overexpression of HOXA9 starting at D4 or later during hematopoiesis significantly promoted hematopoiesis and the production of myeloid progenitors while reduced the production of erythroid progenitors, indicating that HOXA9 plays a key role in hematopoiesis and differentiation of hematopoietic lineages.
RESUMO
The hematopoietic function of HOXC4 has not been extensively investigated. Our research indicated that induction of HOXC4 in co-culture system from D10 significantly promoted productions of most hematopoietic progenitor cells. CD34-CD43+ cells could be clearly classified into CD34-CD43low and CD34-CD43high sub-populations at D14. The former cells had greater myelogenic potential, and their production was not significantly influenced by induction of HOXC4. By contrast, the latter cells had greater potential to differentiate into megakaryocytes and erythroid cells, and thus had properties of erythroid-megakaryocyte common progenitors, which abundance was increased by â¼2-fold when HOXC4 was induced from D10. For CD34-CD43low, CD34+CD43+, and CD34-CD43high sub-populations, CD43 level served as a natural index for the tendency to undergo hematopoiesis. Induction of HOXC4 from D10 caused more CD43+ cells sustain in S-phase with up-regulation of NF-κB signaling, which could be counteracted by inhibition of NF-κB signaling. These observations suggested that promotion of hematopoiesis by HOXC4 is closely related to NF-κB signaling and a change in cell-cycle status, which containing potential of clinical applications.
RESUMO
BACKGROUND AND OBJECTIVES: p21, an important member of the Cip/Kip family, is involved in inhibitory effects of RUNX1b overexpression during the early stage of human hematopoiesis. METHODS AND RESULTS: We established a human embryonic stem cell (hESC) line with inducible expression of p21 (p21/hESCs). Overexpression of p21 did not influence either mesoderm induction or emergence of CD34ï¼ cells, but it significantly decreased the production of CD43ï¼ cells and changed the expression profile of hematopoiesis-related factors, leading to the negative effects of p21 on hematopoiesis. CONCLUSIONS: In RUNX1b/hESC co-cultures when RUNX1b was induced from D0, perturbation of the cell cycle caused by upregulation of p21 probably prevented the appearance of CD43ï¼ cells, but not CD34ï¼ cells. The mechanisms via which CD34ï¼ cells are blocked by RUNX1b overexpression remain to be elucidated.
Assuntos
COVID-19 , Procedimentos Cirúrgicos Cardíacos , Complicações Pós-Operatórias , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Retrospectivos , China/epidemiologia , Complicações Pós-Operatórias/epidemiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Pandemias , Pneumopatias/epidemiologia , Pneumopatias/cirurgia , Estudos de Coortes , SARS-CoV-2RESUMO
The aim of this study is to compare the effects of propofol and sevoflurane anesthesia on perioperative immune response in patients undergoing laparoscopic radical hysterectomy for cervical cancer.Sixty patients with cervical cancer scheduled for elective laparoscopic radical hysterectomy under general anesthesia were randomized into 2 groups. TIVA group received propofol induction and maintenance and SEVO group received sevoflurane induction and maintenance. Blood samples were collected at 30 min before induction (T0); the end of the operation (T1); and 24âh (T2), 48âh (T3), and 72âh (T4) after operation. The T lymphocyte subsets (including CD3+ cells, CD4+ cells, and CD8+ cells) and CD4+/CD8+ ratio, natural killer (NK) cells, and B lymphocytes were analyzed by flow cytometry.After surgery, all immunological indicators except CD8+ cells were significantly decreased in both groups compared to basal levels in T0, and the counts of CD3+ cells, CD4+ cells, NK cells, and the CD4+/CD8+ ratios were significantly lower in the SEVO groups than that in the TIVA group. However, the numbers of B cells were comparable at all the time points between 2 groups.Laparoscopic radical hysterectomy for cervical cancer is associated with postoperative lymphopenia. In terms of protecting circulating lymphocytes, propofol is superior to sevoflurane.