Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 107(19): 8666-71, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421465

RESUMO

Bat flight poses intriguing questions about how flight independently developed in mammals. Flight is among the most energy-consuming activities. Thus, we deduced that changes in energy metabolism must be a primary factor in the origin of flight in bats. The respiratory chain of the mitochondrial produces 95% of the adenosine triphosphate (ATP) needed for locomotion. Because the respiratory chain has a dual genetic foundation, with genes encoded by both the mitochondrial and nuclear genomes, we examined both genomes to gain insights into the evolution of flight within mammals. Evidence for positive selection was detected in 23.08% of the mitochondrial-encoded and 4.90% of nuclear-encoded oxidative phosphorylation (OXPHOS) genes, but in only 2.25% of the nuclear-encoded nonrespiratory genes that function in mitochondria or 1.005% of other nuclear genes in bats. To address the caveat that the two available bat genomes are of only draft quality, we resequenced 77 OXPHOS genes from four species of bats. The analysis of the resequenced gene data are in agreement with our conclusion that a significantly higher proportion of genes involved in energy metabolism, compared with background genes, show evidence of adaptive evolution specific on the common ancestral bat lineage. Both mitochondrial and nuclear-encoded OXPHOS genes display evidence of adaptive evolution along the common ancestral branch of bats, supporting our hypothesis that genes involved in energy metabolism were targets of natural selection and allowed adaptation to the huge change in energy demand that were required during the origin of flight.


Assuntos
Adaptação Fisiológica/genética , Quirópteros/genética , Quirópteros/fisiologia , Metabolismo Energético/genética , Evolução Molecular , Voo Animal/fisiologia , Animais , Humanos , Dados de Sequência Molecular , Filogenia , Roedores/genética , Seleção Genética
2.
Genes Genomics ; 44(11): 1363-1374, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36125655

RESUMO

BACKGROUND: Smoking behavior is influenced by multiple genes, including the bitter taste gene TAS2R38. It has been reported that the correlation between TAS2R38 and smoking behavior has ethnicity-based differences. However, the TAS2R38 status in Chinese smokers is still unclear. OBJECTIVE: This study aims to investigate the possible relationship between genetic variations in TAS2R38 (A49P, V262A and I296V) and smoking behaviors in the Han Chinese population. METHODS: The haplotype analyses were performed and smoking behavior questionnaire was completed by 1271 individuals. Genetic association analyses for smoking behavior were analyzed using chi-square test. Further, for investigating the molecular mechanism of TAS2R38 variants effect on smoking behavior, we conducted TAS2R38-PAV and TAS2R38-AVI expression plasmids and tested the cellular calcium assay by cigarette smoke compounds stimulus in HEK293. RESULTS: Significant associations of genetic variants within TAS2R38 were identified with smoking behavior. We found a higher PAV/PAV frequency than AVI/AVI in moderate and high nicotine dependence (FTND ≥ 4; X2 = 4.611, 1 df, p = 0.032) and strong cigarette smoke flavor intensity preference (X2 = 4.5383, 1 df, p = 0.033) in participants. Furthermore, in the in vitro cellular calcium assay, total particle matter (TPM), N-formylnornicotine and cotinine, existing in cigarette smoke, activated TAS2R38-PAV but not TAS2R38-AVI-transfected cells. CONCLUSION: Our data highlights that genetic variations in TAS2R38 are related to smoking behavior, especially nicotine dependence and cigarette smoke flavor intensity preference. Our findings may encourage further consideration of the taste process to identify individuals susceptible to nicotine dependence, particularly Han Chinese smokers.


Assuntos
Fumar Cigarros , Tabagismo , Cálcio , China , Cotinina , Variação Genética , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/genética , Fumantes , Paladar/genética
3.
Mol Biol Evol ; 27(7): 1467-77, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20142439

RESUMO

Pheromones are chemical cues released and sensed by individuals of the same species, which are of major importance in regulating reproductive and social behaviors of mammals. Generally, they are detected by the vomeronasal system (VNS). Here, we first investigated and compared an essential genetic component of vomeronasal chemoreception, that is, TRPC2 gene, of four marine mammals varying the degree of aquatic specialization and related terrestrial species in order to provide insights into the evolution of pheromonal olfaction in the mammalian transition from land to water. Our results based on sequence characterizations and evolutionary analyses, for the first time, show the evidence for the ancestral impairment of vomeronasal pheromone signal transduction pathway in fully aquatic cetaceans, supporting a reduced or absent dependence on olfaction as a result of the complete adaptation to the marine habitat, whereas the amphibious California sea lion was found to have a putatively functional TRPC2 gene, which is still under strong selective pressures, reflecting the reliance of terrestrial environment on chemical recognition among the semiadapted marine mammals. Interestingly, our study found that, unlike that of the California sea lion, TRPC2 genes of the harbor seal and the river otter, both of which are also semiaquatic, are pseudogenes. Our data suggest that other unknown selective pressures or sensory modalities might have promoted the independent absence of a functional VNS in these two species. In this respect, the evolution of pheromonal olfaction in marine mammals appears to be more complex and confusing than has been previously thought. Our study makes a useful contribution to the current understanding of the evolution of pheromone perception of mammals in response to selective pressures from an aquatic environment.


Assuntos
Evolução Biológica , Mamíferos/genética , Feromônios/fisiologia , Olfato/fisiologia , Canais de Cátion TRPC/genética , Órgão Vomeronasal , Sequência de Aminoácidos , Animais , Genoma , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Canais de Cátion TRPC/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA