Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522280

RESUMO

Afforestation on degraded croplands has been proposed as an effective measure to promote ecosystem functions including soil organic carbon (SOC) sequestration. Glomalin-related soil protein (GRSP) plays a crucial role in promoting the accumulation and stability of SOC. Nevertheless, mechanisms underlying the effects of afforestation on GRSP accumulation have not been well elucidated. In the present study, 14 pairs of maize fields and plantation forests were selected using a paired-site approach in a karst region of southwest China. By measuring soil GRSP and a variety of soil biotic and abiotic variables, the pattern of and controls on GRSP accumulation in response to afforestation were explored. The average content of total GRSP (T-GRSP) and its contribution to SOC in the maize field were 5.22 ± 0.29 mg g-1 and 42.33 ± 2.25%, and those in the plantation forest were 6.59 ± 0.32 mg g-1 and 25.77 ± 1.17%, respectively. T-GRSP content was increased by 26.4% on average, but its contribution to SOC was decreased by 39.1% following afforestation. T-GRSP content decreased as soil depth increased regardless of afforestation or not. Afforestation increased T-GRSP indirectly via its positive effects on arbuscular mycorrhizal fungi biomass, which was stimulated by afforestation through elevating fine root biomass or increasing the availability of labile C and N. The suppressed contribution of T-GRSP to SOC following afforestation was due to the relatively higher increase in other SOC components than T-GRSP and the significant increase of soil C:N ratio. Our study reveals the mechanisms underlying the effects of afforestation on T-GRSP accumulation, and is conducive to improving the mechanistic understanding of microbial control on SOC sequestration following afforestation.


Assuntos
Micorrizas , Solo , Ecossistema , Carbono/análise , Proteínas Fúngicas , Glicoproteínas/metabolismo , Micorrizas/química , Micorrizas/metabolismo , China
2.
Jpn J Radiol ; 41(3): 335-346, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36342645

RESUMO

PURPOSE: To investigate the feasibility and dosimetric characteristics of dose painting for non-enhancing low-grade gliomas (NE-LGGs) guided by three-dimensional arterial spin labeling (3D-ASL). MATERIALS AND METHODS: Eighteen patients with NE-LGGs were enrolled. 3D-ASL, T2 fluid-attenuated inversion recovery (T2 Flair) and contrast-enhanced T1-weighted magnetic resonance images were obtained. The gross tumor volume (GTV) was delineated on the T2 Flair. The hyper-perfusion region of the GTV (GTV-ASL) was determined by 3D-ASL, and the GTV-SUB was obtained by subtracting the GTV-ASL from the GTV. The clinical target volume (CTV) was created by iso-tropically expanding the GTV by 1 cm. The planning target volume (PTV), PTV-ASL were obtained by expanding the external margins of the CTV, GTV-ASL, respectively. PTV-SUB was generated by subtracting PTV-ASL from PTV. Three plans were generated for each patient: a conventional plan (plan 1) without dose escalation delivering 95-110% of 45-60 Gy in 1.8-2 Gy fractions to the PTV and two dose-painting plans (plan 2 and plan 3) with dose escalating by 10-20% (range, 50-72 Gy) to the PTV-ASL based on plan 1. The plan 3 was obtained from plan 2 without the maximum dose constraint. The dosimetric differences among the three plans were compared. RESULTS: The volume ratio of the PTV-ASL to the PTV was (23.49 ± 11.94)% (Z = - 3.724, P = 0.000). Compared with plan 1, D2%, D98% and Dmean of PTV-ASL increased by 14.67%,16.17% and 14.31% in plan2 and 19.84%,15.52% and 14.27% in plan3, respectively (P < 0.05); the D2% of the PTV and PTV-SUB increased by 11.89% and 8.34% in plan 2, 15.89% and 8.49% in plan 3, respectively (P < 0.05). The PTV coverages were comparable among the three plans (P > 0.05). In plan 2 and plan 3, the conformity indexes decreased by 18.60% and 12.79%; while the homogeneity index increased by 1.43 and 2 times (P < 0.05). Compared with plan 1, the D0.1 cc of brain stem and Dmax of optic chiasma were slightly increased in plan 2 and plan 3, and the absolute doses met the dose constraint. The doses of the other organs at risk (OARs) were similar among the three plans (P > 0.05). CONCLUSION: The dose delivered to hyper-perfusion volume derived from 3D-ASL can increased by 10-20% while respecting the constraints to the OARs for NE-LGGs, which provides a basis for future individualized and precise radiotherapy, especially if the contrast agent cannot be injected or when contrast enhancement is uncertain.


Assuntos
Glioma , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Glioma/diagnóstico por imagem , Glioma/radioterapia , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco
3.
Front Oncol ; 12: 914507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860561

RESUMO

Objective: The present study aimed to evaluate the feasibility of sub-volume segmentation for radiotherapy planning of adult non-enhancing low-grade gliomas (NE-LGGs) guided by three-dimensional arterial spin labeling (3D-ASL). The differences in high- and low-perfusion areas of NE-LGGs were analyzed using multi-sequence magnetic resonance imaging (MRI) radiomics. Methods: Fifteen adult patients with NE-LGGs were included in the study. MR images, including T1-weighted imaging (T1WI), T2 Propeller, T2 fluid-attenuated inversion recovery (T2 Flair), 3D-ASL, and contrast-enhanced T1WI (CE-T1WI), were obtained. The gross tumor volume (GTV) was delineated according to the hyperintensity on T2 Flair. The GTV was divided into high- and low-perfusion areas, namely GTV-ASL and GTV-SUB, respectively, based on the differences in cerebral blood flow (CBF) value. The volumes and CBF values of high- and low-perfusion areas were measured and compared. The least absolute shrinkage and selection operator (LASSO) regression was used to select the optimal features of all MR maps. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic accuracy of the absolute CBFmean (aCBFmean), relative CBFmean (rCBFmean, normalized by the CBF value of the normal gray matter), and screened features in differentiating high- and low-perfusion areas. Results: Among the enrolled patients, three (20%) patients with NE-LGGs showed focal intra- and post-radiotherapy contrast enhancement within a prior high-perfusion area of 3D-ASL. The volume ratio of the GTV-ASL to the GTV was (37.08% ± 17.88)% (46.26 ± 44.51 vs. 167.46 ± 209.64 cm3, P = 0.000). The CBFmean in the high-perfusion area was approximately two times of that in the edema area or normal gray matter (66.98 ± 18.03 vs. 35.19 ± 7.75 or 33.92 ± 8.48 ml/100g/min, P = 0.000). Thirteen features were screened, seven of which were extracted from 3D-ASL. The area undercurve (AUC) values of aCBFmean, rCBFmean, and firstorder_10Percentile from 3D-ASL were more than 0.9, of which firstorder_10Percentile was the highest. Their cut-off values were 44.16 ml/100 g/min, 1.49 and 31, respectively. Conclusion: The difference in blood perfusion in the GTV can be quantified and analyzed based on 3D-ASL images for NE-LGGs, which could guide the sub-volume segmentation of the GTV. 3D-ASL should become a routine method for NE-LGGs during simulation and radiotherapy.

4.
J Zhejiang Univ Sci B ; 8(12): 860-6, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18257118

RESUMO

Brix weight per stool (BW) of sugarcane is a complex trait, which is the final product of a combination of many components. Diallel cross experiments were conducted during a period of two years for BW and its five component traits, including stalk diameter (SD), stalk length (SL), stalk number (SN), stalk weight (SW), and brix scale (BS) of sugarcane. Phenotypic data of all the six traits were analyzed by mixed linear model and their phenotype variances were portioned into additive (A), dominance (D), additive x environment interaction (AE) and dominance x environment interaction (DE) effects, and the correlations of A, D, AE and DE effects between BW and its components were estimated. Conditional analysis was employed to investigate the contribution of the components traits to the variances of A, D, AE and DE effects of BW. It was observed that the heritabilities of BW were significantly attributed to A, D and DE by 23.9%, 30.9% and 28.5%, respectively. The variance of A effect for BW was significantly affected by SL, SN and BS by 25.3%, 93.7% and 17.4%, respectively. The variances of D and DE effects for BW were also significantly influenced by all the five components by 5.1%(85.5%. These determinants might be helpful in sugarcane breeding and provide valuable information for multiple-trait improvement of BW.


Assuntos
Saccharum/anatomia & histologia , Saccharum/genética , Alelos , Peso Corporal , Padrões de Herança/genética , Fenótipo , Saccharum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA