Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(2): 393-407, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35962211

RESUMO

At present, sanitary landfill is mainly used for domestic waste treatment in Shannan City, Tibet. However, there are few studies on heavy metals in the soil around the landfill in Shannan city. Therefore, the surrounding soil of Luqionggang landfill in Shannan City, Tibet Autonomous Region, is taken as the research object. In the study, the geo-accumulation index method, Nemerow comprehensive pollution index method and potential ecological risk index method are mainly used to evaluate the pollution and risk of heavy metals in the soil around the landfill site. The main results are as follows: The average pH value of the soil around the landfill site is 9.37, belonging to the strong alkaline range. The average values of heavy metals Hg and Ni in soil exceeded the background content, and the average contents of other heavy metals Cu, Pb, Zn, Cr, As and Cd did not exceed the background content. The average content of these eight heavy metals did not exceed the screening value of the national soil environmental quality standard. In the horizontal direction, the average content of heavy metal elements Cu, Cr, Cd, Hg and Ni is relatively high in the west. The average content of heavy metals As, Zn and Pb in the north, east and south is slightly higher than that in the west. And the farther away from the landfill, the less the soil is affected by heavy metals. The evaluation results of geo-accumulation index show that heavy metal Hg is the most affected. The average value of the comprehensive pollution index is 2.969, which is between 2 and 3, belonging to the moderate pollution level. And the west side of the landfill (downstream area) is greatly affected. The evaluation results of potential ecological hazard pollution index show that the potential risk index of single pollutants of heavy metals Cu, Pb, Zn, Cr, Ni, As and Cd belongs to low ecological hazard level, and the potential risk index of single pollutants of heavy metal Hg belongs to relatively heavy ecological hazard level. On the whole, the total potential risk coefficient belongs to medium pollution hazard degree. According to the correlation analysis, there is no significant correlation between heavy metal elements As and Hg and the other six heavy metal elements. In addition, the pollution source of heavy metal As may be mainly soil forming factors and the pollution source of Hg may be mainly human factors.


Assuntos
Poluentes Ambientais , Mercúrio , Metais Pesados , Poluentes do Solo , Humanos , Solo/química , Tibet , Cádmio/análise , Chumbo/análise , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Mercúrio/análise , Poluentes Ambientais/análise , Medição de Risco , China
2.
Artigo em Inglês | MEDLINE | ID: mdl-36078420

RESUMO

As an important ecological security barrier in China, the ecological environment of Tibet has aroused widespread concern domestically and overseas. Landfills are a major solid waste treatment approach in Tibet but also cause severe environmental pollution. To date, there are no studies related to the pollution risk of landfills in Tibetan areas. This study investigated the pollution levels, ecological risk, health risk, and possible pollution sources of eight heavy metals in the soils around a landfill site in Lhasa, Tibet. The results indicated that the concentrations of heavy metals in soil were relatively low, only cadmium (Cd), arsenic (As), copper (Cu), chromium (Cr), zinc (Zn), nickel (Ni), and lead (Pb) were 1-2 times higher than the corresponding background value. The values of the single pollution index and geo-accumulation index show that the study area is most seriously polluted by Cd and As. Based on the Nemerow pollution index and the pollution load index, over 83.3% and 8.33% of soil sampling sites had light and moderate contamination levels. According to the results of potential ecological risk evaluation, the potential ecological risk of heavy metals in soil was very low, and only one out of the 72 sampling sites exhibited considerable ecological risk. Cd, As, and mercury (Hg) served as the dominant ecological risk contributors and contributed over 45.0%, 14.1%, and 18% of the ecological risk. The results of the health risk evaluation showed that adults have a higher risk of cancer (1.73 × 10-5), while the non-carcinogenic risk for adults was low. Waste disposal activities and construction activities have a significant influence on soil heavy metal concentrations, causing a higher pollution level in the southeast part of the landfill site in Lhasa.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Cádmio , China , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Tibet , Instalações de Eliminação de Resíduos
3.
Environ Sci Pollut Res Int ; 29(5): 6656-6669, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34455557

RESUMO

Waste incineration is a process of full combustion reaction between waste and oxygen at high temperature. It is a new problem whether the special natural environmental conditions of Tibet Plateau, such as low air pressure, low oxygen content, and low temperature, will affect the waste incineration in the plateau area. In this work, the influence of different parameters on MSW incineration efficiency and flue gas emission were investigated. The results showed that the temperatures exhibited a significant impact on the flue gas emission. Under the lower temperature, CO was determined to be the main pollutant. With the increase of temperature, NOx became the main pollutant. The optimal temperature range of flue gas emission was between 800 and 900°C. A slight negative pressure in incinerator was benefit for incineration system safety and flue gas emissions. The optimal range was -50 to 0Pa. Lower oxygen content (3-6%) in the incinerator affected the incineration efficiency and flue gas emission. Meanwhile, the high oxygen content had no obvious impact on the flue gas emission, but the cost increased and the service life of the incinerator was affected. The optimal oxygen content in the incinerator was controlled at 6-8%. Furthermore, the air temperatures, pressures, and oxygen content in the natural environment had no significant effect on MSW incineration process. Increasing the air volume would bring about the increase of N2 in the incinerator. This work provides the basic data support for MSW incineration technology in plateau area.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Poluentes Atmosféricos/análise , Incineração , Oxigênio , Resíduos Sólidos/análise , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA