Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(19): 13888-13899, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36112784

RESUMO

Predictions of cloud droplet activation in the late summertime (September) central Arctic Ocean are made using κ-Köhler theory with novel observations of the aerosol chemical composition from a high-resolution time-of-flight chemical ionization mass spectrometer with a filter inlet for gases and aerosols (FIGAERO-CIMS) and an aerosol mass spectrometer (AMS), deployed during the Arctic Ocean 2018 expedition onboard the Swedish icebreaker Oden. We find that the hygroscopicity parameter κ of the total aerosol is 0.39 ± 0.19 (mean ± std). The predicted activation diameter of ∼25 to 130 nm particles is overestimated by 5%, leading to an underestimation of the cloud condensation nuclei (CCN) number concentration by 4-8%. From this, we conclude that the aerosol in the High Arctic late summer is acidic and therefore highly cloud active, with a substantial CCN contribution from Aitken mode particles. Variability in the predicted activation diameter is addressed mainly as a result of uncertainties in the aerosol size distribution measurements. The organic κ was on average 0.13, close to the commonly assumed κ of 0.1, and therefore did not significantly influence the predictions. These conclusions are supported by laboratory experiments of the activation potential of seven organic compounds selected as representative of the measured aerosol.

2.
J Phys Chem A ; 124(2): 422-429, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31833771

RESUMO

Recent studies on sea spray aerosol indicate an enrichment of Ca2+ in small particles, which are often thought to originate from the very surface of a water body when bubbles burst. One model to explain this observation is the formation of ion pairs between Ca2+(aq) and surface-active organic species. In this study, we have used X-ray photoelectron spectroscopy to probe aqueous salt solutions and artificial sea spray aerosol to study whether ion pairing in the liquid environment also affects the surface composition of dry aerosol. Carboxylic acids were added to the sample solutions to mimic some of the organic compounds present in natural seawater. Our results show that the formation of a core-shell structure governs the surface composition of the aerosol. The core-shell structure contrasts previous observations of the dry sea spray aerosol on substrates. As such, this may indicate that substrates can impact the morphology of the dried aerosol.

3.
ACS Earth Space Chem ; 8(5): 920-936, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38774360

RESUMO

Emissions from biomass burning (BB) occurring at midlatitudes can reach the Arctic, where they influence the remote aerosol population. By using measurements of levoglucosan and black carbon, we identify seven BB events reaching Svalbard in 2020. We find that most of the BB events are significantly different to the rest of the year (nonevents) for most of the chemical and physical properties. Aerosol mass and number concentrations are enhanced by up to 1 order of magnitude during the BB events. During BB events, the submicrometer aerosol bulk composition changes from an organic- and sulfate-dominated regime to a clearly organic-dominated regime. This results in a significantly lower hygroscopicity parameter κ for BB aerosol (0.4 ± 0.2) compared to nonevents (0.5 ± 0.2), calculated from the nonrefractory aerosol composition. The organic fraction in the BB aerosol showed no significant difference for the O:C ratios (0.9 ± 0.3) compared to the year (0.9 ± 0.6). Accumulation mode particles were present during all BB events, while in the summer an additional Aitken mode was observed, indicating a mixture of the advected air mass with locally produced particles. BB tracers (vanillic, homovanillic, and hydroxybenzoic acid, nitrophenol, methylnitrophenol, and nitrocatechol) were significantly higher when air mass back trajectories passed over active fire regions in Eastern Europe, indicating agricultural and wildfires as sources. Our results suggest that the impact of BB on the Arctic aerosol depends on the season in which they occur, and agricultural and wildfires from Eastern Europe have the potential to disturb the background conditions the most.

4.
Nat Commun ; 14(1): 5488, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679320

RESUMO

Black carbon (BC) from anthropogenic and natural sources has a pronounced climatic effect on the polar environment. The interaction of BC with low-level Arctic clouds, important for understanding BC deposition from the atmosphere, is studied using the first long-term observational data set of equivalent black carbon (eBC) inside and outside of clouds observed at Zeppelin Observatory, Svalbard. We show that the measured cloud residual eBC concentrations have a clear seasonal cycle with a maximum in early spring, due to the Arctic haze phenomenon, followed by cleaner summer months with very low concentrations. The scavenged fraction of eBC was positively correlated with the cloud water content and showed lower scavenged fractions at low temperatures, which may be due to mixed-phase cloud processes. A trajectory analysis revealed potential sources of eBC and the need to ensure that aerosol-cloud measurements are collocated, given the differences in air mass origin of cloudy and non-cloudy periods.

5.
Nat Commun ; 14(1): 5997, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770489

RESUMO

Primary biological aerosol particles (PBAP) play an important role in the climate system, facilitating the formation of ice within clouds, consequently PBAP may be important in understanding the rapidly changing Arctic. Within this work, we use single-particle fluorescence spectroscopy to identify and quantify PBAP at an Arctic mountain site, with transmission electronic microscopy analysis supporting the presence of PBAP. We find that PBAP concentrations range between 10-3-10-1 L-1 and peak in summer. Evidences suggest that the terrestrial Arctic biosphere is an important regional source of PBAP, given the high correlation to air temperature, surface albedo, surface vegetation and PBAP tracers. PBAP clearly correlate with high-temperature ice nucleating particles (INP) (>-15 °C), of which a high a fraction (>90%) are proteinaceous in summer, implying biological origin. These findings will contribute to an improved understanding of sources and characteristics of Arctic PBAP and their links to INP.

6.
J Geophys Res Atmos ; 127(6): e2021JD036059, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35865411

RESUMO

The amount of ice versus supercooled water in clouds is important for their radiative properties and role in climate feedbacks. Hence, knowledge of the concentration of ice-nucleating particles (INPs) is needed. Generally, the concentrations of INPs are found to be very low in remote marine locations allowing cloud water to persist in a supercooled state. We had expected the concentrations of INPs at the North Pole to be very low given the distance from open ocean and terrestrial sources coupled with effective wet scavenging processes. Here we show that during summer 2018 (August and September) high concentrations of biological INPs (active at >-20°C) were sporadically present at the North Pole. In fact, INP concentrations were sometimes as high as those recorded at mid-latitude locations strongly impacted by highly active biological INPs, in strong contrast to the Southern Ocean. Furthermore, using a balloon borne sampler we demonstrated that INP concentrations were often different at the surface versus higher in the boundary layer where clouds form. Back trajectory analysis suggests strong sources of INPs near the Russian coast, possibly associated with wind-driven sea spray production, whereas the pack ice, open leads, and the marginal ice zone were not sources of highly active INPs. These findings suggest that primary ice production, and therefore Arctic climate, is sensitive to transport from locations such as the Russian coast that are already experiencing marked climate change.

7.
J Geophys Res Atmos ; 127(11): e2021JD036383, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35859907

RESUMO

Detailed knowledge of the physical and chemical properties and sources of particles that form clouds is especially important in pristine areas like the Arctic, where particle concentrations are often low and observations are sparse. Here, we present in situ cloud and aerosol measurements from the central Arctic Ocean in August-September 2018 combined with air parcel source analysis. We provide direct experimental evidence that Aitken mode particles (particles with diameters ≲70 nm) significantly contribute to cloud condensation nuclei (CCN) or cloud droplet residuals, especially after the freeze-up of the sea ice in the transition toward fall. These Aitken mode particles were associated with air that spent more time over the pack ice, while size distributions dominated by accumulation mode particles (particles with diameters ≳70 nm) showed a stronger contribution of oceanic air and slightly different source regions. This was accompanied by changes in the average chemical composition of the accumulation mode aerosol with an increased relative contribution of organic material toward fall. Addition of aerosol mass due to aqueous-phase chemistry during in-cloud processing was probably small over the pack ice given the fact that we observed very similar particle size distributions in both the whole-air and cloud droplet residual data. These aerosol-cloud interaction observations provide valuable insight into the origin and physical and chemical properties of CCN over the pristine central Arctic Ocean.

8.
Environ Sci Atmos ; 1(4): 161-175, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34278305

RESUMO

The remote central Arctic during summertime has a pristine atmosphere with very low aerosol particle concentrations. As the region becomes increasingly ice-free during summer, enhanced ocean-atmosphere fluxes of aerosol particles and precursor gases may therefore have impacts on the climate. However, large knowledge gaps remain regarding the sources and physicochemical properties of aerosols in this region. Here, we present insights into the molecular composition of semi-volatile aerosol components collected in September 2018 during the MOCCHA (Microbiology-Ocean-Cloud-Coupling in the High Arctic) campaign as part of the Arctic Ocean 2018 expedition with the Swedish Icebreaker Oden. Analysis was performed offline in the laboratory using an iodide High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer with a Filter Inlet for Gases and AEROsols (FIGAERO-HRToF-CIMS). Our analysis revealed significant signal from organic and sulfur-containing compounds, indicative of marine aerosol sources, with a wide range of carbon numbers and O : C ratios. Several of the sulfur-containing compounds are oxidation products of dimethyl sulfide (DMS), a gas released by phytoplankton and ice algae. Comparison of the time series of particulate and gas-phase DMS oxidation products did not reveal a significant correlation, indicative of the different lifetimes of precursor and oxidation products in the different phases. This is the first time the FIGAERO-HRToF-CIMS was used to investigate the composition of aerosols in the central Arctic. The detailed information on the molecular composition of Arctic aerosols presented here can be used for the assessment of aerosol solubility and volatility, which is relevant for understanding aerosol-cloud interactions.

9.
Nat Commun ; 11(1): 4924, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004812

RESUMO

In the central Arctic Ocean the formation of clouds and their properties are sensitive to the availability of cloud condensation nuclei (CCN). The vapors responsible for new particle formation (NPF), potentially leading to CCN, have remained unidentified since the first aerosol measurements in 1991. Here, we report that all the observed NPF events from the Arctic Ocean 2018 expedition are driven by iodic acid with little contribution from sulfuric acid. Iodic acid largely explains the growth of ultrafine particles (UFP) in most events. The iodic acid concentration increases significantly from summer towards autumn, possibly linked to the ocean freeze-up and a seasonal rise in ozone. This leads to a one order of magnitude higher UFP concentration in autumn. Measurements of cloud residuals suggest that particles smaller than 30 nm in diameter can activate as CCN. Therefore, iodine NPF has the potential to influence cloud properties over the Arctic Ocean.

10.
11.
Sci Data ; 6(1): 157, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439840

RESUMO

A reference dataset of multi-wavelength particle light scattering and hemispheric backscattering coefficients for different relative humidities (RH) between RH = 30 and 95% and wavelengths between λ = 450 nm and 700 nm is described in this work. Tandem-humidified nephelometer measurements from 26 ground-based sites around the globe, covering multiple aerosol types, have been re-analysed and harmonized into a single dataset. The dataset includes multi-annual measurements from long-term monitoring sites as well as short-term field campaign data. The result is a unique collection of RH-dependent aerosol light scattering properties, presented as a function of size cut. This dataset is important for climate and atmospheric model-measurement inter-comparisons, as a means to improve model performance, and may be useful for satellite and remote sensing evaluation using surface-based, in-situ measurements.

12.
Appl Opt ; 46(35): 8542-52, 2007 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-18071387

RESUMO

We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA