Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Cell ; 83(22): 4106-4122.e10, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977120

RESUMO

γ-Secretases mediate the regulated intramembrane proteolysis (RIP) of more than 150 integral membrane proteins. We developed an unbiased γ-secretase substrate identification (G-SECSI) method to study to what extent these proteins are processed in parallel. We demonstrate here parallel processing of at least 85 membrane proteins in human microglia in steady-state cell culture conditions. Pharmacological inhibition of γ-secretase caused substantial changes of human microglial transcriptomes, including the expression of genes related to the disease-associated microglia (DAM) response described in Alzheimer disease (AD). While the overall effects of γ-secretase deficiency on transcriptomic cell states remained limited in control conditions, exposure of mouse microglia to AD-inducing amyloid plaques strongly blocked their capacity to mount this putatively protective DAM cell state. We conclude that γ-secretase serves as a critical signaling hub integrating the effects of multiple extracellular stimuli into the overall transcriptome of the cell.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Camundongos , Animais , Humanos , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteoma/genética , Transdução de Sinais , Proteínas de Membrana/metabolismo , Doença de Alzheimer/genética
2.
Cell Rep ; 43(6): 114216, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38819990

RESUMO

The amyloid plaque niche is a pivotal hallmark of Alzheimer's disease (AD). Here, we employ two high-resolution spatial transcriptomics (ST) platforms, CosMx and Spatial Enhanced Resolution Omics-sequencing (Stereo-seq), to characterize the transcriptomic alterations, cellular compositions, and signaling perturbations in the amyloid plaque niche in an AD mouse model. We discover heterogeneity in the cellular composition of plaque niches, marked by an increase in microglial accumulation. We profile the transcriptomic alterations of glial cells in the vicinity of plaques and conclude that the microglial response to plaques is consistent across different brain regions, while the astrocytic response is more heterogeneous. Meanwhile, as the microglial density of plaque niches increases, astrocytes acquire a more neurotoxic phenotype and play a key role in inducing GABAergic signaling and decreasing glutamatergic signaling in hippocampal neurons. We thus show that the accumulation of microglia around hippocampal plaques disrupts astrocytic signaling, in turn inducing an imbalance in neuronal synaptic signaling.


Assuntos
Doença de Alzheimer , Astrócitos , Modelos Animais de Doenças , Microglia , Placa Amiloide , Transcriptoma , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Microglia/metabolismo , Microglia/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Transcriptoma/genética , Camundongos , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos Transgênicos , Comunicação Celular , Transdução de Sinais , Neurônios/metabolismo , Neurônios/patologia , Masculino
3.
Alzheimers Res Ther ; 15(1): 121, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438770

RESUMO

BACKGROUND: Gene expression is dysregulated in Alzheimer's disease (AD) patients, both in peripheral blood and post mortem brain. We investigated peripheral whole-blood gene (co)expression to determine molecular changes prior to symptom onset. METHODS: RNA was extracted and sequenced for 65 cognitively healthy F-PACK participants (65 (56-80) years, 34 APOE4 non-carriers, 31 APOE4 carriers), at baseline and follow-up (interval: 5.0 (3.4-8.6) years). Participants received amyloid PET at both time points and amyloid rate of change derived. Accumulators were defined with rate of change ≥ 2.19 Centiloids. We performed differential gene expression and weighted gene co-expression network analysis to identify differentially expressed genes and networks of co-expressed genes, respectively, with respect to traits of interest (APOE4 status, amyloid accumulation (binary/continuous)), and amyloid positivity status, followed by Gene Ontology annotation. RESULTS: There were 166 significant differentially expressed genes at follow-up compared to baseline in APOE4 carriers only, whereas 12 significant differentially expressed genes were found only in APOE4 non-carriers, over time. Among the significant genes in APOE4 carriers, several had strong evidence for a pathogenic role in AD based on direct association scores generated from the DISQOVER platform: NGRN, IGF2, GMPR, CLDN5, SMIM24. Top enrichment terms showed upregulated mitochondrial and metabolic pathways, and an exacerbated upregulation of ribosomal pathways in APOE4 carriers compared to non-carriers. Similarly, there were 33 unique significant differentially expressed genes at follow-up compared to baseline in individuals classified as amyloid negative at baseline and positive at follow-up or amyloid positive at both time points and 32 unique significant differentially expressed genes over time in individuals amyloid negative at both time points. Among the significant genes in the first group, the top five with the highest direct association scores were as follows: RPL17-C18orf32, HSP90AA1, MBP, SIRPB1, and GRINA. Top enrichment terms included upregulated metabolism and focal adhesion pathways. Baseline and follow-up gene co-expression networks were separately built. Seventeen baseline co-expression modules were derived, with one significantly negatively associated with amyloid accumulator status (r2 = - 0.25, p = 0.046). This was enriched for proteasomal protein catabolic process and myeloid cell development. Thirty-two follow-up modules were derived, with two significantly associated with APOE4 status: one downregulated (r2 = - 0.27, p = 0.035) and one upregulated (r2 = 0.26, p = 0.039) module. Top enrichment processes for the downregulated module included proteasomal protein catabolic process and myeloid cell homeostasis. Top enrichment processes for the upregulated module included cytoplasmic translation and rRNA processing. CONCLUSIONS: We show that there are longitudinal gene expression changes that implicate a disrupted immune system, protein removal, and metabolism in cognitively intact individuals who carry APOE4 or who accumulate in cortical amyloid. This provides insight into the pathophysiology of AD, whilst providing novel targets for drug and therapeutic development.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Idoso , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Proteínas Amiloidogênicas , Apolipoproteína E4/genética , Perfilação da Expressão Gênica , Fatores de Transcrição , Transcriptoma , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
4.
Clin Cancer Res ; 25(23): 7024-7034, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31506389

RESUMO

PURPOSE: Microsatellite instability (MSI) and high tumor mutation burden (TMB-High) are promising pan-tumor biomarkers used to select patients for treatment with immune checkpoint blockade; however, real-time sequencing of unresectable or metastatic solid tumors is often challenging. We report a noninvasive approach for detection of MSI and TMB-High in the circulation of patients. EXPERIMENTAL DESIGN: We developed an approach that utilized a hybrid-capture-based 98-kb pan-cancer gene panel, including targeted microsatellite regions. A multifactorial error correction method and a novel peak-finding algorithm were established to identify rare MSI frameshift alleles in cell-free DNA (cfDNA). RESULTS: Through analysis of cfDNA derived from a combination of healthy donors and patients with metastatic cancer, the error correction and peak-finding approaches produced a specificity of >99% (n = 163) and sensitivities of 78% (n = 23) and 67% (n = 15), respectively, for MSI and TMB-High. For patients treated with PD-1 blockade, we demonstrated that MSI and TMB-High in pretreatment plasma predicted progression-free survival (hazard ratios: 0.21 and 0.23, P = 0.001 and 0.003, respectively). In addition, we analyzed cfDNA from longitudinally collected plasma samples obtained during therapy to identify patients who achieved durable response to PD-1 blockade. CONCLUSIONS: These analyses demonstrate the feasibility of noninvasive pan-cancer screening and monitoring of patients who exhibit MSI or TMB-High and have a high likelihood of responding to immune checkpoint blockade.See related commentary by Wang and Ajani, p. 6887.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , Instabilidade de Microssatélites , Mutação , Neoplasias/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Biomarcadores Tumorais/sangue , Estudos de Casos e Controles , DNA Tumoral Circulante/genética , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Prognóstico , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA