Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 34(1): e4401, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32851735

RESUMO

Quantitative mapping of gadoxetate uptake and excretion rates in liver cells has shown potential to significantly improve the management of chronic liver disease and liver cancer. Unfortunately, technical and clinical validation of the technique is currently hampered by the lack of data on gadoxetate relaxivity. The aim of this study was to fill this gap by measuring gadoxetate relaxivity in liver tissue, which approximates hepatocytes, in blood, urine and bile at magnetic field strengths of 1.41, 1.5, 3, 4.7 and 7 T. Measurements were performed ex vivo in 44 female Mrp2 knockout rats and 30 female wild-type rats who had received an intravenous bolus of either 10, 25 or 40 µmol/kg gadoxetate. T1 was measured at 37 ± 3°C on NMR instruments (1.41 and 3 T), small-animal MRI (4.7 and 7 T) and clinical MRI (1.5 and 3 T). Gadolinium concentration was measured with optical emission spectrometry or mass spectrometry. The impact on measurements of gadoxetate rate constants was determined by generalizing pharmacokinetic models to tissues with different relaxivities. Relaxivity values (L mmol-1 s-1 ) showed the expected dependency on tissue/biofluid type and field strength, ranging from 15.0 ± 0.9 (1.41) to 6.0 ± 0.3 (7) T in liver tissue, from 7.5 ± 0.2 (1.41) to 6.2 ± 0.3 (7) T in blood, from 5.6 ± 0.1 (1.41) to 4.5 ± 0.1 (7) T in urine and from 5.6 ± 0.4 (1.41) to 4.3 ± 0.6 (7) T in bile. Failing to correct for the relaxivity difference between liver tissue and blood overestimates intracellular uptake rates by a factor of 2.0 at 1.41 T, 1.8 at 1.5 T, 1.5 at 3 T and 1.2 at 4.7 T. The relaxivity values derived in this study can be used retrospectively and prospectively to remove a well-known bias in gadoxetate rate constants. This will promote the clinical translation of MR-based liver function assessment by enabling direct validation against reference methods and a more effective translation between in vitro findings, animal models and patient studies.


Assuntos
Gadolínio DTPA/sangue , Fígado/diagnóstico por imagem , Campos Magnéticos , Imageamento por Ressonância Magnética , Animais , Bile/metabolismo , Transporte Biológico , Feminino , Gadolínio/sangue , Cinética , Ratos Sprague-Dawley
2.
Mol Pharm ; 18(8): 2997-3009, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34283621

RESUMO

Physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development to simulate changes in both systemic and tissue exposures that arise as a result of changes in enzyme and/or transporter activity. Verification of these model-based simulations of tissue exposure is challenging in the case of transporter-mediated drug-drug interactions (tDDI), in particular as these may lead to differential effects on substrate exposure in plasma and tissues/organs of interest. Gadoxetate, a promising magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2). In this study, we developed a gadoxetate PBPK model and explored the use of liver-imaging data to achieve and refine in vitro-in vivo extrapolation (IVIVE) of gadoxetate hepatic transporter kinetic data. In addition, PBPK modeling was used to investigate gadoxetate hepatic tDDI with rifampicin i.v. 10 mg/kg. In vivo dynamic contrast-enhanced (DCE) MRI data of gadoxetate in rat blood, spleen, and liver were used in this analysis. Gadoxetate in vitro uptake kinetic data were generated in plated rat hepatocytes. Mean (%CV) in vitro hepatocyte uptake unbound Michaelis-Menten constant (Km,u) of gadoxetate was 106 µM (17%) (n = 4 rats), and active saturable uptake accounted for 94% of total uptake into hepatocytes. PBPK-IVIVE of these data (bottom-up approach) captured reasonably systemic exposure, but underestimated the in vivo gadoxetate DCE-MRI profiles and elimination from the liver. Therefore, in vivo rat DCE-MRI liver data were subsequently used to refine gadoxetate transporter kinetic parameters in the PBPK model (top-down approach). Active uptake into the hepatocytes refined by the liver-imaging data was one order of magnitude higher than the one predicted by the IVIVE approach. Finally, the PBPK model was fitted to the gadoxetate DCE-MRI data (blood, spleen, and liver) obtained with and without coadministered rifampicin. Rifampicin was estimated to inhibit active uptake transport of gadoxetate into the liver by 96%. The current analysis highlighted the importance of gadoxetate liver data for PBPK model refinement, which was not feasible when using the blood data alone, as is common in PBPK modeling applications. The results of our study demonstrate the utility of organ-imaging data in evaluating and refining PBPK transporter IVIVE to support the subsequent model use for quantitative evaluation of hepatic tDDI.


Assuntos
Meios de Contraste/farmacocinética , Gadolínio DTPA/farmacocinética , Fígado/diagnóstico por imagem , Fígado/metabolismo , Imageamento por Ressonância Magnética/métodos , Rifampina/farmacocinética , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Biomarcadores/metabolismo , Células Cultivadas , Meios de Contraste/administração & dosagem , Meios de Contraste/metabolismo , Interações Medicamentosas , Gadolínio DTPA/administração & dosagem , Gadolínio DTPA/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Modelos Animais , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Ratos , Rifampina/administração & dosagem , Rifampina/metabolismo
3.
Magn Reson Imaging ; 59: 121-129, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30872166

RESUMO

BACKGROUND: Many translational MR biomarkers derive from measurements of the water proton longitudinal relaxation rate R1, but evidence for between-site reproducibility of R1 in small-animal MRI is lacking. OBJECTIVE: To assess R1 repeatability and multi-site reproducibility in phantoms for preclinical MRI. METHODS: R1 was measured by saturation recovery in 2% agarose phantoms with five nickel chloride concentrations in 12 magnets at 5 field strengths in 11 centres on two different occasions within 1-13 days. R1 was analysed in three different regions of interest, giving 360 measurements in total. Root-mean-square repeatability and reproducibility coefficients of variation (CoV) were calculated. Propagation of reproducibility errors into 21 translational MR measurements and biomarkers was estimated. Relaxivities were calculated. Dynamic signal stability was also measured. RESULTS: CoV for day-to-day repeatability (N = 180 regions of interest) was 2.34% and for between-centre reproducibility (N = 9 centres) was 1.43%. Mostly, these do not propagate to biologically significant between-centre error, although a few R1-based MR biomarkers were found to be quite sensitive even to such small errors in R1, notably in myocardial fibrosis, in white matter, and in oxygen-enhanced MRI. The relaxivity of aqueous Ni2+ in 2% agarose varied between 0.66 s-1 mM-1 at 3 T and 0.94 s-1 mM-1 at 11.7T. INTERPRETATION: While several factors affect the reproducibility of R1-based MR biomarkers measured preclinically, between-centre propagation of errors arising from intrinsic equipment irreproducibility should in most cases be small. However, in a few specific cases exceptional efforts might be required to ensure R1-reproducibility.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Sefarose/química , Água/química , Animais , Biomarcadores , Simulação por Computador , Camundongos , Níquel/química , Oxigênio , Prótons , Ratos , Análise de Regressão , Reprodutibilidade dos Testes
4.
Nanomaterials (Basel) ; 8(4)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561782

RESUMO

The optimization of iron oxide nanoparticles as tracers for magnetic particle imaging (MPI) alongside the development of data acquisition equipment and image reconstruction techniques is crucial for the required improvements in image resolution and sensitivity of MPI scanners. We present a large-scale water-based synthesis of multicore superparamagnetic iron oxide nanoparticles stabilized with dextran (MC-SPIONs). We also demonstrate the preparation of single core superparamagnetic iron oxide nanoparticles in organic media, subsequently coated with a poly(ethylene glycol) gallic acid polymer and phase transferred to water (SC-SPIONs). Our aim was to obtain long-term stable particles in aqueous media with high MPI performance. We found that the amplitude of the third harmonic measured by magnetic particle spectroscopy (MPS) at 10 mT is 2.3- and 5.8-fold higher than Resovist for the MC-SPIONs and SC-SPIONs, respectively, revealing excellent MPI potential as compared to other reported MPI tracer particle preparations. We show that the reconstructed MPI images of phantoms using optimized multicore and specifically single-core particles are superior to that of commercially available Resovist, which we utilize as a reference standard, as predicted by MPS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA