Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Glob Chang Biol ; 29(3): 575-589, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36444494

RESUMO

We identified 14 emerging and poorly understood threats and opportunities for addressing the global conservation of freshwater mussels over the next decade. A panel of 17 researchers and stakeholders from six continents submitted a total of 56 topics that were ranked and prioritized using a consensus-building Delphi technique. Our 14 priority topics fell into five broad themes (autecology, population dynamics, global stressors, global diversity, and ecosystem services) and included understanding diets throughout mussel life history; identifying the drivers of population declines; defining metrics for quantifying mussel health; assessing the role of predators, parasites, and disease; informed guidance on the risks and opportunities for captive breeding and translocations; the loss of mussel-fish co-evolutionary relationships; assessing the effects of increasing surface water changes; understanding the effects of sand and aggregate mining; understanding the effects of drug pollution and other emerging contaminants such as nanomaterials; appreciating the threats and opportunities arising from river restoration; conserving understudied hotspots by building local capacity through the principles of decolonization; identifying appropriate taxonomic units for conservation; improved quantification of the ecosystem services provided by mussels; and understanding how many mussels are enough to provide these services. Solutions for addressing the topics ranged from ecological studies to technological advances and socio-political engagement. Prioritization of our topics can help to drive a proactive approach to the conservation of this declining group which provides a multitude of important ecosystem services.


Assuntos
Bivalves , Ecossistema , Animais , Conservação dos Recursos Naturais , Água Doce , Rios
2.
Conserv Biol ; 37(2): e13994, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36047704

RESUMO

Europe has a long history of human pressure on freshwater ecosystems. As pressure continues to grow and new threats emerge, there is an urgent need for conservation of freshwater biodiversity and its ecosystem services. However, whilst some taxonomic groups, mainly vertebrates, have received a disproportionate amount of attention and funds, other groups remain largely off the public and scientific radar. Freshwater mussels (Bivalvia, Unionida) are an alarming example of this conservation bias and here we point out six conceptual areas that need immediate and long-term attention: knowledge, threats, socioeconomics, conservation, governance and education. The proposed roadmap aims to advance research, policy and education by identifying the most pressing priorities for the short- and long-term conservation of freshwater mussels across Europe.


Assuntos
Bivalves , Ecossistema , Animais , Humanos , Conservação dos Recursos Naturais , Biodiversidade , Água Doce , Europa (Continente)
3.
Glob Chang Biol ; 27(11): 2298-2314, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33739622

RESUMO

Anthropogenic freshwater habitats may provide undervalued prospects for long-term conservation as part of species conservation planning. This fundamental, but overlooked, issue requires attention considering the pace that humans have been altering natural freshwater ecosystems and the accelerated levels of biodiversity decline in recent decades. We compiled 709 records of freshwater mussels (Bivalvia, Unionida) inhabiting a broad variety of anthropogenic habitat types (from small ponds to large reservoirs and canals) and reviewed their importance as refuges for this faunal group. Most records came from Europe and North America, with a clear dominance of canals and reservoirs. The dataset covered 228 species, including 34 threatened species on the IUCN Red List. We discuss the conservation importance and provide guidance on how these anthropogenic habitats could be managed to provide optimal conservation value to freshwater mussels. This review also shows that some of these habitats may function as ecological traps owing to conflicting management practices or because they act as a sink for some populations. Therefore, anthropogenic habitats should not be seen as a panacea to resolve conservation problems. More information is necessary to better understand the trade-offs between human use and the conservation of freshwater mussels (and other biota) within anthropogenic habitats, given the low number of quantitative studies and the strong biogeographic knowledge bias that persists.


Assuntos
Bivalves , Ecossistema , Animais , Biodiversidade , Conservação dos Recursos Naturais , Europa (Continente) , Água Doce , Humanos , América do Norte
4.
Mol Phylogenet Evol ; 146: 106755, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32028028

RESUMO

Freshwater mussels (Bivalvia: Unionidae) is a diverse family with around 700 species being widespread in the Northern Hemisphere and Africa. These animals fulfill key ecological functions and provide important services to humans. Unfortunately, populations have declined dramatically over the last century, rendering Unionidae one of the world's most imperiled taxonomic groups. In Far East Asia (comprising Japan, Korea, and Eastern Russia), conservation actions have been hindered by a lack of basic information on the number, identity, distribution and phylogenetic relationships of species. Available knowledge is restricted to studies on national and sub-national levels. The present study aims to resolve the diversity, biogeography and evolutionary relationships of the Far East Asian Unionidae in a globally comprehensive phylogenetic and systematic context. We reassessed the systematics of all Unionidae species in the region, including newly collected specimens from across Japan, South Korea, and Russia, based on molecular (including molecular species delineation and a COI + 28S phylogeny) and comparative morphological analyses. Biogeographical patterns were then assessed based on available species distribution data from the authors and previous reference works. We revealed that Unionidae species richness in Far East Asia is 30% higher than previously assumed, counting 43 species (41 native + 2 alien) within two Unionidae subfamilies, the Unioninae (32 + 1) and Gonideinae (9 + 1). Four of these species are new to science, i.e. Beringiana gosannensissp. nov., Beringiana fukuharaisp. nov., Buldowskia kamiyaisp. nov., and Koreosolenaia sitgyensisgen. & sp. nov. We also propose a replacement name for Nodularia sinulata, i.e. Nodularia breviconchanom. nov. and describe a new tribe (Middendorffinaiini tribe nov.) within the Unioninae subfamily. Biogeographical patterns indicate that this fauna is related to that from China south to Vietnam until the Mekong River basin. The Japanese islands of Honshu, Shikoku, Kyushu, Hokkaido, and the Korean Peninsula were identified as areas of particularly high conservation value, owing to high rates of endemism, diversity and habitat loss. The genetically unique species within the genera Amuranodonta, Obovalis, Koreosolenaiagen. nov., and Middendorffinaia are of high conservation concern.


Assuntos
Unionidae/classificação , Animais , Evolução Biológica , Água Doce , Japão , Coreia (Geográfico) , Filogenia , Filogeografia , Federação Russa , Unionidae/genética
5.
Heredity (Edinb) ; 124(1): 182-196, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201385

RESUMO

Using a new fossil-calibrated mitogenome-based approach, we identified macroevolutionary shifts in mitochondrial gene order among the freshwater mussels (Unionoidea). We show that the early Mesozoic divergence of the two Unionoidea clades, Margaritiferidae and Unionidae, was accompanied by a synchronous split in the gene arrangement in the female mitogenome (i.e., gene orders MF1 and UF1). Our results suggest that this macroevolutionary jump was completed within a relatively short time interval (95% HPD 201-226 Ma) that coincided with the Triassic-Jurassic mass extinction. Both gene orders have persisted within these clades for ~200 Ma. The monophyly of the so-called "problematic" Gonideinae taxa was supported by all the inferred phylogenies in this study using, for the first time, the M- and F-type mitogenomes either singly or combined. Within Gonideinae, two additional splits in the gene order (UF1 to UF2, UF2 to UF3) occurred in the Mesozoic and have persisted for ~150 and ~100 Ma, respectively. Finally, the mitogenomic results suggest ancient connections between freshwater basins of East Asia and Europe near the Cretaceous-Paleogene boundary, probably via a continuous paleo-river system or along the Tethys coastal line, which are well supported by at least three independent but almost synchronous divergence events.


Assuntos
Evolução Biológica , Genoma Mitocondrial , Filogenia , Unionidae/classificação , Animais , Feminino , Fósseis , Água Doce , Ordem dos Genes , Masculino , Unionidae/genética
6.
Mol Phylogenet Evol ; 127: 98-118, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29729933

RESUMO

Two Unionida (freshwater mussel) families are present in the Northern Hemisphere; the Margaritiferidae, representing the most threatened of unionid families, and the Unionidae, which include several genera of unresolved taxonomic placement. The recent reassignment of the poorly studied Lamprotula rochechouartii from the Unionidae to the Margaritiferidae motivated a new search for other potential species of margaritiferids from members of Gibbosula and Lamprotula. Based on molecular and morphological analyses conducted on newly collected specimens from Vietnam, we here assign Gibbosula crassa to the Margaritiferidae. Additionally, we reanalyzed all diagnostic characteristics of the Margaritiferidae and examined museum specimens of Lamprotula and Gibbosula. As a result, two additional species are also moved to the Margaritiferidae, i.e. Gibbosula confragosa and Gibbosula polysticta. We performed a robust five marker phylogeny with all available margaritiferid species and discuss the taxonomy within the family. The present phylogeny reveals the division of Margaritiferidae into four ancient clades with distinct morphological, biogeographical and ecological characteristics that justify the division of the Margaritiferidae into two subfamilies (Gibbosulinae and Margaritiferinae) and four genera (Gibbosula, Cumberlandia, Margaritifera, and Pseudunio). The systematics of the Margaritiferidae family is re-defined as well as their distribution, potential origin and main biogeographic patterns.


Assuntos
Bivalves/classificação , Espécies em Perigo de Extinção , Água Doce , Filogenia , Animais , Biodiversidade , Bivalves/genética , Calibragem , Fósseis , Genoma Mitocondrial , Especificidade da Espécie , Vietnã
7.
Mol Phylogenet Evol ; 106: 174-191, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27621130

RESUMO

Freshwater mussels of the order Unionida are key elements of freshwater habitats and are responsible for important ecological functions and services. Unfortunately, these bivalves are among the most threatened freshwater taxa in the world. However, conservation planning and management are hindered by taxonomic problems and a lack of detailed ecological data. This highlights the urgent need for advances in the areas of systematics and evolutionary relationships within the Unionida. This study presents the most comprehensive phylogeny to date of the larger Unionida family, i.e., the Unionidae. The phylogeny is based on a combined dataset of 1032bp (COI+28S) of 70 species in 46 genera, with 7 of this genera being sequenced for the first time. The resulting phylogeny divided the Unionidae into 6 supported subfamilies and 18 tribes, three of which are here named for the first time (i.e., Chamberlainiini nomen novum, Cristariini nomen novum and Lanceolariini nomen novum). Molecular analyses were complemented by investigations of selected morphological, anatomical and behavioral characters used in traditional phylogenetic studies. No single morphological, anatomical or behavioral character was diagnostic at the subfamily level and few were useful at the tribe level. However, within subfamilies, many tribes can be recognized based on a subset of these characters. The geographical distribution of each of the subfamilies and tribes is also presented. The present study provides important advances in the systematics of these extraordinary taxa with implications for future ecological and conservation studies.


Assuntos
Bivalves/classificação , Animais , Teorema de Bayes , Evolução Biológica , Bivalves/genética , Citocromos c/classificação , Citocromos c/genética , Citocromos c/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Bases de Dados Genéticas , Funções Verossimilhança , Filogenia , RNA Ribossômico 28S/classificação , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Análise de Sequência de DNA
8.
Sci Rep ; 12(1): 20385, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36437370

RESUMO

The freshwater mussel Westralunio carteri (Iredale, 1934) has long been considered the sole Westralunio species in Australia, limited to the Southwest and listed as vulnerable on the IUCN Red List and under Australian legislation. Here, we used species delimitation models based on COI mtDNA sequences to confirm existence of three evolutionarily significant units (ESUs) within this taxon and conducted morphometric analyses to investigate whether shell shape differed significantly among these ESUs. "W. carteri" I was found to be significantly larger and more elongated than "W. carteri" II and "W. carteri" II + III combined, but not different from "W. carteri" III alone. We recognise and redescribe "W. carteri" I as Westralunio carteri (Iredale, 1934) from western coastal drainages and describe "W. carteri" II and "W. carteri" III as Westralunio inbisi sp. nov. from southern and lower southwestern drainages. Two subspecies are further delineated: "W. carteri" II is formally described as Westralunio inbisi inbisi subsp. nov. from southern coastal drainages, and "W. carteri" III as Westralunio inbisi meridiemus subsp. nov. from the southwestern corner. Because this study profoundly compresses the range of Westralunio carteri northward and introduces additional southern and southwestern taxa with restricted distributions, new threatened species nominations are necessary.


Assuntos
Bivalves , Animais , Austrália Ocidental , Austrália , Filogenia , Bivalves/genética , Água Doce
9.
Biol Rev Camb Philos Soc ; 97(5): 1967-1998, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35770724

RESUMO

Identification of ecosystem services, i.e. the contributions that ecosystems make to human well-being, has proven instrumental in galvanising public and political support for safeguarding biodiversity and its benefits to people. Here we synthesise the global evidence on ecosystem services provided and disrupted by freshwater bivalves, a heterogenous group of >1200 species, including some of the most threatened (in Unionida) and invasive (e.g. Dreissena polymorpha) taxa globally. Our systematic literature review resulted in a data set of 904 records from 69 countries relating to 24 classes of provisioning (N = 189), cultural (N = 491) and regulating (N = 224) services following the Common International Classification of Ecosystem Services (CICES). Prominent ecosystem services included (i) the provisioning of food, materials and medicinal products, (ii) knowledge acquisition (e.g. on water quality, past environments and historical societies), ornamental and other cultural contributions, and (iii) the filtration, sequestration, storage and/or transformation of biological and physico-chemical water properties. About 9% of records provided evidence for the disruption rather than provision of ecosystem services. Synergies and trade-offs of ecosystem services were observed. For instance, water filtration by freshwater bivalves can be beneficial for the cultural service 'biomonitoring', while negatively or positively affecting food consumption or human recreation. Our evidence base spanned a total of 91 genera and 191 species, dominated by Unionida (55% of records, 76% of species), Veneroida (21 and 9%, respectively; mainly Corbicula spp.) and Myoida (20 and 4%, respectively; mainly Dreissena spp.). About one third of records, predominantly from Europe and the Americas, related to species that were non-native to the country of study. The majority of records originated from Asia (35%), with available evidence for 23 CICES classes, as well as Europe (29%) and North America (23%), where research was largely focused on 'biomonitoring'. Whilst the earliest record (from 1949) originated from North America, since 2000, annual output of records has increased rapidly in Asia and Europe. Future research should focus on filling gaps in knowledge in lesser-studied regions, including Africa and South America, and should look to provide a quantitative valuation of the socio-economic costs and benefits of ecosystem services shaped by freshwater bivalves.


Assuntos
Bivalves , Ecossistema , Animais , Biodiversidade , Água Doce , Humanos , Qualidade da Água
10.
Mitochondrial DNA A DNA Mapp Seq Anal ; 29(6): 862-866, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28885060

RESUMO

Environmental DNA detection has emerged as a powerful tool to monitor aquatic species without the need for capture or visual identification and is particularly useful for rare or elusive species. Our objective was to develop an eDNA approach for detecting the southern river terrapin (Batagur affinis) in Malaysia. We designed species-specific primers for a fragment of B. affinis mtDNA and evaluated their effectiveness in silico, in vitro and in situ. The primers amplified 110 bp of the cytochrome b mtDNA sequence of B. affinis from aquarium water samples housing nine juvenile B. affinis. We also successfully detected B. affinis eDNA from river samples taken from a site where turtles were known to be in the vicinity. Prospects and challenges of using an eDNA approach to help determine the distribution of B. affinis, essential information for an effective conservation plan, are discussed.


Assuntos
Distribuição Animal , DNA Mitocondrial/genética , Tartarugas/genética , Animais , Biodiversidade , Citocromos b/genética , Rios , Tartarugas/fisiologia
12.
Sci Total Environ ; 635: 750-760, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29680765

RESUMO

Deforestation, climate change and invasive species constitute three global threats to biodiversity that act synergistically. However, drivers and rates of loss of freshwater biodiversity now and in the future are poorly understood. Here we focus on the potential impacts of global change on freshwater mussels (Order Unionida) in Sundaland (SE Asia), a vulnerable group facing global declines and recognized indicators of overall freshwater biodiversity. We used an ensemble of distribution models to identify habitats potentially suitable for freshwater mussels and their change under a range of climate, deforestation and invasion scenarios. Our data and models revealed that, at present, Sundaland features 47 and 32 Mha of habitat that can be considered environmentally suitable for native and invasive freshwater mussels, respectively. We anticipate that by 2050, the area suitable for palm oil cultivation may expand between 8 and 44 Mha, representing an annual increase of 2-11%. This is expected to result in a 20% decrease in suitable habitat for native mussels, a drop that reaches 30% by 2050 when considering concomitant climate change. In contrast, the habitat potentially suitable for invasive mussels may increase by 44-56% under 2050 future scenarios. Consequently, native mussels may compete for habitat, food resources and fish hosts with invasive mussels across approximately 60% of their suitable range. Our projections can be used to guide future expeditions to monitor the conservation status of freshwater biodiversity, and potentially reveal populations of endemic species on the brink of extinction. Future conservation measures-most importantly the designation of nature reserves-should take into account trends in freshwater biodiversity generally, and particularly species such as freshwater mussels, vital to safeguard fundamental ecosystem services.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecossistema , Água Doce , Animais , Mudança Climática , Monitoramento Ambiental
13.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3571-2, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27158872

RESUMO

Freshwater mussels of the family Unionidae exhibit a particular form of mitochondria inheritance called double uniparental inheritance (DUI), in which the mitochondria are inherited by both male and female parents. The (M)ale and (F)emale mitogenomes are highly divergent within species. In the present study, we determine and describe the complete M and F mitogenomes of the Endangered freshwater mussel Potomida littoralis (Cuvier, 1798). The complete M and F mitogenomes sequences are 16 451 bp and 15 787 bp in length, respectively. Both F and M have the same gene content: 13 protein-coding genes (PCGs), 22 transfer RNA (trn) and 2 ribosomal RNA (rrn) genes. Bayesian analyses based on the concatenated nucleotide sequences of 12 PCGs and 2 rrn genes of both genomes, including mitogenome sequences available from related species, were performed. Male and Female lineages are monophyletic within the family, but reveal distinct phylogenetic relationships.


Assuntos
Bivalves/genética , Espécies em Perigo de Extinção , Genoma Mitocondrial , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/isolamento & purificação , Feminino , Água Doce , Genes Mitocondriais , Masculino , Mitocôndrias/genética , Fases de Leitura Aberta , Filogenia , RNA de Transferência/genética , Sequenciamento Completo do Genoma
14.
Sci Total Environ ; 571: 1069-78, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27473771

RESUMO

Freshwater mussels (Bivalvia, Unionida) fulfil important ecosystem functions and are one of the most threatened freshwater taxa globally. Knowledge of freshwater mussel diversity, distribution and ecology in Peninsular Malaysia is extremely poor, and the conservation status of half of the species presumed to occur in the region has yet to be assessed. We conducted the first comprehensive assessment of Peninsular Malaysia's freshwater mussels based on species presence/absence and environmental data collected from 155 sites spanning all major river catchments and diverse habitat types. Through an integrative morphological-molecular approach we recognised nine native and one widespread non-native species, i.e. Sinanodonta woodiana. Two species, i.e. Pilsbryoconcha compressa and Pseudodon cambodjensis, had not been previously recorded from Malaysia, which is likely a result of morphological misidentifications of historical records. Due to their restriction to single river catchments and declining distributions, Hyriopsis bialata, possibly endemic to Peninsular Malaysia, Ensidens ingallsianus, possibly already extinct in the peninsula, and Rectidens sumatrensis, particularly require conservation attention. Equally, the Pahang, the Perak and the north-western river catchments are of particular conservation value due to the presence of a globally unique freshwater mussel fauna. Statistical relationships of 15 water quality parameters and mussel presence/absence identified acidification and nutrient pollution (eutrophication) as the most important anthropogenic factors threatening freshwater mussel diversity in Peninsular Malaysia. These factors can be linked to atmospheric pollution, deforestation, oil-palm plantations and a lack of functioning waste water treatment, and could be mitigated by establishing riparian buffers and improving waste water treatment for rivers running through agricultural and residential land.


Assuntos
Distribuição Animal , Biodiversidade , Bivalves/fisiologia , Conservação dos Recursos Naturais , Poluição Química da Água/análise , Animais , Malásia
15.
PLoS One ; 10(5): e0125801, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26018575

RESUMO

Human activities such as transport, trade and tourism are likely to influence the spatial distribution of non-native species and yet, Species Distribution Models (SDMs) that aim to predict the future broad scale distribution of invaders often rely on environmental (e.g. climatic) information only. This study investigates if and to what extent do human activities that directly or indirectly influence nature (hereafter the human footprint) affect the global distribution of invasive species in terrestrial, freshwater and marine ecosystems. We selected 72 species including terrestrial plants, terrestrial animals, freshwater and marine invasive species of concern in a focus area located in NW Europe (encompassing Great Britain, France, The Netherlands and Belgium). Species Distribution Models were calibrated with the global occurrence of species and a set of high-resolution (9×9 km) environmental (e.g. topography, climate, geology) layers and human footprint proxies (e.g. the human influence index, population density, road proximity). Our analyses suggest that the global occurrence of a wide range of invaders is primarily limited by climate. Temperature tolerance was the most important factor and explained on average 42% of species distribution. Nevertheless, factors related to the human footprint explained a substantial amount (23% on average) of species distributions. When global models were projected into the focus area, spatial predictions integrating the human footprint featured the highest cumulative risk scores close to transport networks (proxy for invasion pathways) and in habitats with a high human influence index (proxy for propagule pressure). We conclude that human related information-currently available in the form of easily accessible maps and databases-should be routinely implemented into predictive frameworks to inform upon policies to prevent and manage invasions. Otherwise we might be seriously underestimating the species and areas under highest risk of future invasions.


Assuntos
Água Doce , Atividades Humanas , Espécies Introduzidas , Animais , Bélgica , Biodiversidade , Ecossistema , França , Humanos , Países Baixos , Dinâmica Populacional , Reino Unido
16.
Ecol Evol ; 2(4): 740-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22837823

RESUMO

Freshwater mussels (order Unionoida) represent one of the most severely endangered groups of animals due to habitat destruction, introduction of nonnative species, and loss of host fishes, which their larvae (glochidia) are obligate parasites on. Conservation efforts such as habitat restoration or restocking of host populations are currently hampered by difficulties in unionoid species identification by morphological means. Here we present the first complete molecular identification key for all seven indigenous North and Central European unionoid species and the nonnative Sinanodonta woodiana, facilitating quick, low-cost, and reliable identification of adult and larval specimens. Application of this restriction fragment length polymorphisms (RFLP) key resulted in 100% accurate assignment of 90 adult specimens from across the region by digestion of partial ITS-1 (where ITS is internal transcribed spacer) polymerase chain reaction (PCR) products in two to four single digestions with five restriction endonucleases. In addition, we provide protocols for quick and reliable extraction and amplification of larval mussel DNA from complete host fish gill arches. Our results indicate that this new method can be applied on infection rates as low as three glochidia per gill arch and enables, for the first time, comprehensive, large-scale assessments of the relative importance of different host species for given unionoid populations.

17.
J Morphol ; 272(11): 1365-75, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21688300

RESUMO

Intraspecific trends in freshwater mussel (unionoid) shells that are consistently associated with differences in the mussels' sex and/or parasitic infestation can potentially be used to reconstruct sex ratios or parasitic levels of modern and ancient unionoid populations. In contrast to morphological patterns within mammal species, such dimorphic trends within unionoid species are, however, poorly understood. This study investigates, for the first time, to what extent sex, trematode infection and indirect habitat effects determine shell morphology in the freshwater mussel Anodonta anatina. Three of the five study populations displayed significant sexual shell width dimorphism. Here, shells of females were significantly wider than males, probably as a result of altered shell growth to accommodate marsupial gills. In two of these populations, female shells were additionally significantly thinner than those of males, which could be a result of resource depletion by offspring production. Two other A. anatina populations showed no significant dimorphic patterns, and our results indicate that this interpopulational difference in the degree of sexual dimorphism may reflect the overarching effect of habitat on morphology. Thus, populations in the most favourable habitats exhibit faster growth rates, attain larger maximum sizes and produce more offspring, which results in more swollen gills and consequently more inflated shells of gravid females compared to less fecund populations. None of the populations showed any evidence for sexual dimorphism in overall size, growth rate, sagittal shape and density of shells. In addition to sexual dimorphisms, infestation by bucephalid trematode parasites (Rhipidocotyle sp.) significantly altered sagittal and lateral shell shape of A. anatina in one of the populations, with infected specimens growing wider and more elongated.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Anodonta , Ecossistema , Doenças Parasitárias em Animais/complicações , Caracteres Sexuais , Infecções por Trematódeos/complicações , Adaptação Fisiológica , Exoesqueleto/parasitologia , Animais , Feminino , Água Doce , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA