RESUMO
Prenatal maternal stressful life events are associated with adverse neurodevelopmental outcomes in offspring. Biological mechanisms underlying these associations are largely unknown, but DNA methylation likely plays a role. This meta-analysis included twelve non-overlapping cohorts from ten independent longitudinal studies (N = 5,496) within the international Pregnancy and Childhood Epigenetics consortium to examine maternal stressful life events during pregnancy and DNA methylation in cord blood. Children whose mothers reported higher levels of cumulative maternal stressful life events during pregnancy exhibited differential methylation of cg26579032 in ALKBH3. Stressor-specific domains of conflict with family/friends, abuse (physical, sexual, and emotional), and death of a close friend/relative were also associated with differential methylation of CpGs in APTX, MyD88, and both UHRF1 and SDCCAG8, respectively; these genes are implicated in neurodegeneration, immune and cellular functions, regulation of global methylation levels, metabolism, and schizophrenia risk. Thus, differences in DNA methylation at these loci may provide novel insights into potential mechanisms of neurodevelopment in offspring.
RESUMO
Maternal educational attainment (MEA) shapes offspring health through multiple potential pathways. Differential DNA methylation may provide a mechanistic understanding of these long-term associations. We aimed to quantify the associations of MEA with offspring DNA methylation levels at birth, in childhood and in adolescence. Using 37 studies from high-income countries, we performed meta-analysis of epigenome-wide association studies (EWAS) to quantify the associations of completed years of MEA at the time of pregnancy with offspring DNA methylation levels at birth (n = 9 881), in childhood (n = 2 017), and adolescence (n = 2 740), adjusting for relevant covariates. MEA was found to be associated with DNA methylation at 473 cytosine-phosphate-guanine sites at birth, one in childhood, and four in adolescence. We observed enrichment for findings from previous EWAS on maternal folate, vitamin-B12 concentrations, maternal smoking, and pre-pregnancy BMI. The associations were directionally consistent with MEA being inversely associated with behaviours including smoking and BMI. Our findings form a bridge between socio-economic factors and biology and highlight potential pathways underlying effects of maternal education. The results broaden our understanding of bio-social associations linked to differential DNA methylation in multiple early stages of life. The data generated also offers an important resource to help a more precise understanding of the social determinants of health.
RESUMO
OBJECTIVE: Type 2 diabetes mellitus (T2D) is a chronic disease that is influenced by different factors. The extent to which degree adverse childhood events (ACEs) can modify the potential to development of T2D is still not explored and therefore represents one of the central questions of the childhood escape-late life outcome (DRKS00012419) study. In addition, transgenerational effects were considered in the analyses. METHODS: The study analyzed the association of self-reported traumatic experiences and T2D disease of refugees from East Prussia, who were displaced from their former homeland at the end of the World War II. In addition, an independent sample consisting of participants of first-generation offspring of refugees was analyzed. RESULTS: Of the 242 refugees, all aged between 73 and 93 years, 17.36% reported T2D disease, whereas among the offspring ( n = 272), aged between 47 and 73 years, it was 5.5%, meaning reduced T2D prevalence for both generations compared with the German population of comparable age. In the refugee generation, emotional neglect showed a negative association with development of T2D in later life. In women, separation from close caregivers in childhood showed a negative association with later T2D. In contrast, experiencing emotional abuse in childhood showed a positive association with later T2D. The offspring generation showed no associations of adverse childhood events and reported T2D diagnoses in later life. CONCLUSIONS: Our results demonstrate that individual trauma in childhood is responded to with different mechanisms that can lead to both increased and decreased reported T2D diagnoses in adulthood and thus should by no means be considered in a generalized manner.
Assuntos
Diabetes Mellitus Tipo 2 , Refugiados , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/epidemiologia , Refugiados/psicologia , II Guerra Mundial , Autorrelato , PrevalênciaRESUMO
Cognitive skills are a strong predictor of a wide range of later life outcomes. Genetic and epigenetic associations across the genome explain some of the variation in general cognitive abilities in the general population and it is plausible that epigenetic associations might arise from prenatal environmental exposures and/or genetic variation early in life. We investigated the association between cord blood DNA methylation at birth and cognitive skills assessed in children from eight pregnancy cohorts within the Pregnancy And Childhood Epigenetics (PACE) Consortium across overall (total N = 2196), verbal (total N = 2206) and non-verbal cognitive scores (total N = 3300). The associations at single CpG sites were weak for all of the cognitive domains investigated. One region near DUSP22 on chromosome 6 was associated with non-verbal cognition in a model adjusted for maternal IQ. We conclude that there is little evidence to support the idea that variation in cord blood DNA methylation at single CpG sites is associated with cognitive skills and further studies are needed to confirm the association at DUSP22.
Assuntos
Metilação de DNA , Epigenoma , Criança , Cognição , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , GravidezRESUMO
The COVID-19 pandemic severely affected the lives of families and the well-being of both parents and their children. Various factors, including prenatal stress, dysregulated stress response systems, and genetics may have influenced how the stress caused by the pandemic impacted the well-being of different family members. The present work investigated if emotional well-being during the COVID-19 pandemic could be predicted by developmental stress-related and genetic factors. Emotional well-being of 7-10 year-old children (n = 263) and mothers (n = 241) (participants in a longitudinal German birth cohort (POSEIDON)) was assessed during the COVID-19 pandemic using the CRISIS questionnaire at two time periods (July 2020-October 2020; November 2020-February 2021). Associations of the children's and mothers' well-being with maternal perceived stress, of the children's well-being with their salivary and morning urine cortisol at 45 months, and polygenic risk scores (PRSs) for depression, schizophrenia, loneliness were investigated. Lower emotional well-being was observed in both children and mothers during compared to before the pandemic, with the children's but not the mothers' emotional well-being improving over the course of the pandemic. A positive association between the child and maternal emotional well-being was found. Prenatally assessed maternal perceived stress was associated with a lower well-being in children, but not in mothers. Cortisol measures and PRSs were not significantly associated with the children's emotional well-being. The present study confirms that emotional well-being of children and mothers are linked, and were negatively affected by the COVID-19 pandemic, with differences in development over time.
Assuntos
COVID-19 , Emoções , Sistema Endócrino , Saúde Mental , Mães , Herança Multifatorial , Estudos Longitudinais , Humanos , Saúde Mental/estatística & dados numéricos , COVID-19/epidemiologia , Sistema Endócrino/metabolismo , Masculino , Feminino , Criança , Adulto , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Predisposição Genética para Doença , Transtorno Depressivo Maior/genética , Esquizofrenia/genética , SolidãoRESUMO
Excessive alcohol consumption has detrimental effects on the entire organism, especially on the liver. The toxicity is partly dependent on age, as older individuals metabolize alcohol more slowly leading to increased cellular injury. This study aimed to investigate the effects of moderate binge drinking on the liver of young and aged mice in a genome-wide multi-omics approach. We determined DNA methylation (DNAm) using the Illumina MouseMethylation array and gene expression by RNA sequencing in 18 female Balb/c mice in a 2 × 2 design. The animals underwent three moderate binge drinking cycles (ethanol vs. vehicle) and liver tissue was harvested at 4 or 19 months of age. We tested differential gene expression (DE) and DNAm associated with ethanol intake in linear models separately in young and aged mice, performed enrichment analyses for pathways and GWAS signatures of problematic alcohol use, and analysed the overlap of DNAm and gene expression. We observed DE in young and aged animals and substantial overlap in genes such as Bhlhe40, Klf10, and Frmd8. DE genes in aged animals were enriched for biological processes related to alcohol metabolism, inflammation, liver fibrosis, and GWAS signatures of problematic alcohol use. We identified overlapping signatures from DNAm and gene expression, for example, Frmd8 in aged and St6galnac4 in young mice. This study offers converging evidence of novel age-related targets in a moderate alcohol consumption model highlighting dysregulations in genes related to alcohol metabolism, inflammation, and liver fibrosis. Future studies are needed to confirm these results and elucidate the underlying mechanisms.
Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Feminino , Animais , Camundongos , Consumo Excessivo de Bebidas Alcoólicas/genética , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Multiômica , Etanol/farmacologia , Consumo de Bebidas Alcoólicas/genética , Inflamação , Cirrose HepáticaRESUMO
Cognitive impairment is a common feature in schizophrenia and the strongest prognostic factor for long-term outcome. Identifying a trait associated with the genetic background for cognitive outcome in schizophrenia may aid in a deeper understanding of clinical disease subtypes. Fast sleep spindles may represent such a biomarker as they are strongly genetically determined, associated with cognitive functioning and impaired in schizophrenia and unaffected relatives. We measured fast sleep spindle density in 150 healthy adults and investigated its association with a genome-wide polygenic score for schizophrenia (SCZ-PGS). The association between SCZ-PGS and fast spindle density was further characterized by stratifying it to the genetic background of intelligence. SCZ-PGS was positively associated with fast spindle density. This association mainly depended on pro-cognitive genetic variants. Our results strengthen the evidence for a genetic background of spindle abnormalities in schizophrenia. Spindle density might represent an easily accessible marker for a favourable cognitive outcome which should be further investigated in clinical samples.
Assuntos
Disfunção Cognitiva , Esquizofrenia , Adulto , Cognição , Disfunção Cognitiva/genética , Humanos , Herança Multifatorial/genética , Esquizofrenia/complicações , Esquizofrenia/genética , SonoRESUMO
Prenatal, perinatal, and postnatal factors have been shown to shape neurobiological functioning and alter the risk for mental disorders later in life. The gut microbiome is established early in life, and interacts with the brain via the brain-immune-gut axis. However, little is known about how the microbiome relates to early-life cognitive functioning in children. The present study, where the fecal microbiome of 380 children was characterized using 16S rDNA and metagenomic sequencing aimed to investigate the association between the microbiota and cognitive functioning of children at the age of 45 months measured with the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III). Overall the microbiome profile showed a significant association with cognitive functioning. A strong correlation was found between cognitive functioning and the relative abundance of an unidentified genus of the family Enterobacteriaceae. Follow-up mediation analyses revealed significant mediation effects of the level of this genus on the association of maternal smoking during pregnancy and current cigarette smoking with cognitive function. Metagenomic sequencing of a subset of these samples indicated that the identified genus was most closely related to Enterobacter asburiae. Analysis of metabolic potential showed a nominally significant association of cognitive functioning with the microbial norspermidine biosynthesis pathway. Our results indicate that alteration of the gut microflora is associated with cognitive functioning in childhood. Furthermore, they suggest that the altered microflora might interact with other environmental factors such as maternal cigarette smoking. Interventions directed at altering the microbiome should be explored in terms of improving cognitive functioning in young children.
Assuntos
Microbioma Gastrointestinal , Microbiota , Criança , Pré-Escolar , Cognição , Fezes , Feminino , Humanos , Gravidez , RNA Ribossômico 16SRESUMO
The 16-item Self-Stigma of Depression Scale (SSDS) was developed to measure anticipated self-stigma hypothetically in case of depression. It is perfect for assessing anticipated self-stigma in community samples. However, in clinical samples measuring actual experienced instead of hypothetical self-stigma may be more appropriate. Aims of this study were the adaptation and validation of the SSDS specifically for people with depression. The abbreviation SSDS-D will be used in the following (D for depression) for this adapted version. All 16 items were translated into German and changed into indicative. Factor structure, internal consistency and construct validity were tested in two independent clinical samples (NA=550; NB=180). In sample A, the original structure of four factors (representing Shame, Self-Blame, Help-Seeking Inhibition, and Social Inadequacy) could be replicated in exploratory factor analyses with the exception of one item. In sample B, confirmatory factor analyses indicated a better fit for the empirically derived than for the alternatively tested original factor structure. Internal consistencies of subscales were satisfying to very good. Even controlled for current depressive symptoms, there were significant correlations to self-esteem and other self-stigma scales as expected, supporting the construct validity of SSDS-D. The SSDS-D appears to be a valid and reliable scale covering experienced self-stigma of people with depression. It may be used in clinical samples to identify correlates, test theoretical models and the efficacy of interventions.
Assuntos
Depressão/psicologia , Testes Neuropsicológicos , Autoimagem , Estereotipagem , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Vergonha , Comportamento Social , Traduções , Adulto JovemRESUMO
BACKGROUND: Given the great interest in identifying reliable predictors of the response to antidepressant drugs, the present study investigated whether polygenic scores (PGS) for Major Depressive Disorder (MDD) and antidepressant treatment response (ADR) were related to the complex trait of antidepressant response in the Early Medication Change (EMC) cohort. METHODS: In this secondary analysis of the EMC trial (N = 889), 481 MDD patients were included and compared to controls from a population-based cohort. Patients were treated over eight weeks within a pre-defined treatment-algorithm. We investigated patients' genetic variation associated with MDD and ADR, using PGS and examined the association of PGS with treatment outcomes (early improvement, response, remission). Additionally, the influence of two cytochrome P450 drug-metabolizing enzymes (CYP2C19, CYP2D6) was determined. RESULTS: PGS for MDD was significantly associated with disorder status (NkR2 = 2.48 %, p < 1*10-12), with higher genetic burden in EMC patients compared to controls. The PGS for ADR did not explain remission status. The PGS for MDD and ADR were also not associated with treatment outcomes. In addition, there were no effects of common CYP450 gene variants on ADR. LIMITATIONS: The study was limited by variability in the outcome parameters due to differences in treatment and insufficient sample size in the used ADR genome-wide association study (GWAS). CONCLUSIONS: The present study confirms a polygenic contribution to MDD burden in the EMC patients. Larger GWAS with homogeneity in antidepressant treatments are needed to explore the genetic variation associated with ADR and realize the potential of PGS to contribute to specific response subtypes.
Assuntos
Antidepressivos , Transtorno Depressivo Maior , Herança Multifatorial , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Antidepressivos/uso terapêutico , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Resultado do Tratamento , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2C19/genética , Estudos de Coortes , Variação GenéticaRESUMO
Background: Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5 mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5 hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5 mC and 5 hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Methods: Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5 mC and 5 hmC at the genome-wide level. Differential 5 mC and 5 hmC were evaluated using the methylKit R package and significance was set at false discovery rate < 0.05 and differential methylation > 2. Functional enrichment analyses were performed, and gene-level convergence was evaluated in an independent dataset that assessed 5 mC and 5 hmC of AUD in bulk cortical tissue. Results: We identified 417 5 mC and 363 5hmC significant differential CpG sites associated with AUD, with 59% in gene promoters. Some of the identified genes have been previously implicated in alcohol consumption, including SYK, DNMT3A for 5 mC, GAD1, DLX1, DLX2, for 5 hmC and GATA4 in both. Convergence with a previous AUD 5 mC and 5 hmC study was observed for 28 genes. We also identified 5 and 35 differential regions for 5 mC and 5 hmC, respectively. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5 mC genes. Discussion: This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD, identifying both previously reported and potentially novel gene associations with AUD. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.
RESUMO
BACKGROUND: The use of mobile devices to continuously monitor objectively extracted parameters of depressive symptomatology is seen as an important step in the understanding and prevention of upcoming depressive episodes. Speech features such as pitch variability, speech pauses, and speech rate are promising indicators, but empirical evidence is limited, given the variability of study designs. OBJECTIVE: Previous research studies have found different speech patterns when comparing single speech recordings between patients and healthy controls, but only a few studies have used repeated assessments to compare depressive and nondepressive episodes within the same patient. To our knowledge, no study has used a series of measurements within patients with depression (eg, intensive longitudinal data) to model the dynamic ebb and flow of subjectively reported depression and concomitant speech samples. However, such data are indispensable for detecting and ultimately preventing upcoming episodes. METHODS: In this study, we captured voice samples and momentary affect ratings over the course of 3 weeks in a sample of patients (N=30) with an acute depressive episode receiving stationary care. Patients underwent sleep deprivation therapy, a chronotherapeutic intervention that can rapidly improve depression symptomatology. We hypothesized that within-person variability in depressive and affective momentary states would be reflected in the following 3 speech features: pitch variability, speech pauses, and speech rate. We parametrized them using the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) from open-source Speech and Music Interpretation by Large-Space Extraction (openSMILE; audEERING GmbH) and extracted them from a transcript. We analyzed the speech features along with self-reported momentary affect ratings, using multilevel linear regression analysis. We analyzed an average of 32 (SD 19.83) assessments per patient. RESULTS: Analyses revealed that pitch variability, speech pauses, and speech rate were associated with depression severity, positive affect, valence, and energetic arousal; furthermore, speech pauses and speech rate were associated with negative affect, and speech pauses were additionally associated with calmness. Specifically, pitch variability was negatively associated with improved momentary states (ie, lower pitch variability was linked to lower depression severity as well as higher positive affect, valence, and energetic arousal). Speech pauses were negatively associated with improved momentary states, whereas speech rate was positively associated with improved momentary states. CONCLUSIONS: Pitch variability, speech pauses, and speech rate are promising features for the development of clinical prediction technologies to improve patient care as well as timely diagnosis and monitoring of treatment response. Our research is a step forward on the path to developing an automated depression monitoring system, facilitating individually tailored treatments and increased patient empowerment.
Assuntos
Transtorno Depressivo , Fala , Humanos , Projetos Piloto , Depressão/terapia , Privação do SonoRESUMO
Structural and functional changes of the brain are assumed to contribute to excessive cocaine intake, craving, and relapse in cocaine use disorder (CUD). Epigenetic and transcriptional changes were hypothesized as a molecular basis for CUD-associated brain alterations. Here we performed a multi-omics study of CUD by integrating epigenome-wide methylomic (N = 42) and transcriptomic (N = 25) data from the same individuals using postmortem brain tissue of Brodmann Area 9 (BA9). Of the N = 1 057 differentially expressed genes (p < 0.05), one gene, ZFAND2A, was significantly upregulated in CUD at transcriptome-wide significance (q < 0.05). Differential alternative splicing (AS) analysis revealed N = 98 alternatively spliced transcripts enriched in axon and dendrite extension pathways. Strong convergent overlap in CUD-associated expression deregulation was found between our BA9 cohort and independent replication datasets. Epigenomic, transcriptomic, and AS changes in BA9 converged at two genes, ZBTB4 and INPP5E. In pathway analyses, synaptic signaling, neuron morphogenesis, and fatty acid metabolism emerged as the most prominently deregulated biological processes. Drug repositioning analysis revealed glucocorticoid receptor targeting drugs as most potent in reversing the CUD expression profile. Our study highlights the value of multi-omics approaches for an in-depth molecular characterization and provides insights into the relationship between CUD-associated epigenomic and transcriptomic signatures in the human prefrontal cortex.
Assuntos
Transtornos Relacionados ao Uso de Cocaína , Metilação de DNA , Transcriptoma , Humanos , Transtornos Relacionados ao Uso de Cocaína/genética , Masculino , Feminino , Adulto , Perfilação da Expressão Gênica , Epigênese Genética , Pessoa de Meia-Idade , Epigenômica , Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , MultiômicaRESUMO
Structural and functional alterations in the brain's reward circuitry are present in cocaine use disorder (CocUD), but their molecular underpinnings remain unclear. To investigate these mechanisms, we performed single-nuclei multiome profiling on postmortem caudate nucleus tissue from six individuals with CocUD and eight controls. We profiled 31,178 nuclei, identifying 13 cell types including D1- and D2-medium spiny neurons (MSNs) and glial cells. We observed 1,383 differentially regulated genes and 10,235 differentially accessible peaks, with alterations in MSNs and astrocytes related to neurotransmitter activity and synapse organization. Gene regulatory network analysis identified the transcription factor ZEB1 as exhibiting distinct CocUD-specific subclusters, activating downstream expression of ion- and calcium-channels in MSNs. Further, PDE10A emerged as a potential drug target, showing conserved effects in a rat model. This study highlights cell type-specific molecular alterations in CocUD and provides targets for further investigation, demonstrating the value of multi-omics approaches in addiction research.
RESUMO
INTRODUCTION: Formal genetics studies show that smoking is influenced by genetic factors; exploring this on the molecular level can offer deeper insight into the etiology of smoking behaviours. METHODS: Summary statistics from the latest wave of the GWAS and Sequencing Consortium of Alcohol and Nicotine (GSCAN) were used to calculate polygenic risk scores (PRS) in a sample of ~2200 individuals who smoke/individuals who never smoked. The associations of smoking status with PRS for Smoking Initiation (i.e., Lifetime Smoking; SI-PRS), and Fagerström Test for Nicotine Dependence (FTND) score with PRS for Cigarettes per Day (CpD-PRS) were examined, as were distinct/additive effects of parental smoking on smoking status. RESULTS: SI-PRS explained 10.56% of variance (Nagelkerke-R2) in smoking status (p=6.45x10-30). In individuals who smoke, CpD-PRS was associated with FTND score (R2=5.03%, p=1.88x10-12). Parental smoking alone explained R2=3.06% (p=2.43×10-12) of smoking status, and 0.96% when added to the most informative SI-PRS model (total R²=11.52%). CONCLUSION: These results show the potential utility of molecular genetic data for research investigating smoking prevention. The fact that PRS explains more variance than family history highlights progress from formal to molecular genetics; the partial overlap and increased predictive value when using both suggests the importance of combining these approaches.
Assuntos
Herança Multifatorial , Fumar , Tabagismo , Humanos , Herança Multifatorial/genética , Masculino , Feminino , Fumar/genética , Fumar/epidemiologia , Adulto , Tabagismo/genética , Tabagismo/epidemiologia , Estudo de Associação Genômica Ampla , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem , Predisposição Genética para Doença/genética , Estratificação de Risco GenéticoRESUMO
Background: Alcohol use disorder (AUD) has a profound public health impact. However, understanding of the molecular mechanisms underlying the development and progression of AUD remain limited. Here, we interrogate AUD-associated DNA methylation (DNAm) changes within and across addiction-relevant brain regions: the nucleus accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC). Methods: Illumina HumanMethylation EPIC array data from 119 decedents of European ancestry (61 cases, 58 controls) were analyzed using robust linear regression, with adjustment for technical and biological variables. Associations were characterized using integrative analyses of public gene regulatory data and published genetic and epigenetic studies. We additionally tested for brain region-shared and -specific associations using mixed effects modeling and assessed implications of these results using public gene expression data. Results: At a false discovery rate ≤ 0.05, we identified 53 CpGs significantly associated with AUD status for NAc and 31 CpGs for DLPFC. In a meta-analysis across the regions, we identified an additional 21 CpGs associated with AUD, for a total of 105 unique AUD-associated CpGs (120 genes). AUD-associated CpGs were enriched in histone marks that tag active promoters and our strongest signals were specific to a single brain region. Of the 120 genes, 23 overlapped with previous genetic associations for substance use behaviors; all others represent novel associations. Conclusions: Our findings identify AUD-associated methylation signals, the majority of which are specific within NAc or DLPFC. Some signals may constitute predisposing genetic and epigenetic variation, though more work is needed to further disentangle the neurobiological gene regulatory differences associated with AUD.
RESUMO
Background: Alcohol use disorder (AUD) has a profound public health impact. However, understanding of the molecular mechanisms that underlie the development and progression of AUD remains limited. Here, we investigated AUD-associated DNA methylation changes within and across 2 addiction-relevant brain regions, the nucleus accumbens and dorsolateral prefrontal cortex. Methods: Illumina HumanMethylation EPIC array data from 119 decedents (61 cases, 58 controls) were analyzed using robust linear regression with adjustment for technical and biological variables. Associations were characterized using integrative analyses of public annotation data and published genetic and epigenetic studies. We also tested for brain region-shared and brain region-specific associations using mixed-effects modeling and assessed implications of these results using public gene expression data from human brain. Results: At a false discovery rate of ≤.05, we identified 105 unique AUD-associated CpGs (annotated to 120 genes) within and across brain regions. AUD-associated CpGs were enriched in histone marks that tag active promoters, and our strongest signals were specific to a single brain region. Some concordance was found between our results and those of earlier published alcohol use or dependence methylation studies. Of the 120 genes, 23 overlapped with previous genetic associations for substance use behaviors, some of which also overlapped with previous addiction-related methylation studies. Conclusions: Our findings identify AUD-associated methylation signals and provide evidence of overlap with previous genetic and methylation studies. These signals may constitute predisposing genetic differences or robust methylation changes associated with AUD, although more work is needed to further disentangle the mechanisms that underlie these associations and their implications for AUD.
Alcohol use disorder (AUD) has a profound public health impact, but understanding of the molecular mechanisms that underlie its development and progression remains limited. In the current study, which is the largest of its kind, we examined DNA methylation changes in the brains of 119 individuals with and without AUD. In 2 brain regions key to the addiction cycle, the nucleus accumbens and dorsolateral prefrontal cortex, we identified 105 methylation markers (CpGs) associated with AUD across 120 genes. We also integrated these results with previously published genetic and epigenetic studies, highlighting potential targets for better understanding how AUD develops, progresses, and someday may be treated.
RESUMO
BACKGROUND: Alcohol use disorder (AUD) is associated with increased mortality and morbidity risk. A reason for this could be accelerated biological aging, which is strongly influenced by disease processes such as inflammation. As recent studies of AUD show changes in DNA methylation and gene expression in neuroinflammation-related pathways in the brain, biological aging represents a potentially important construct for understanding the adverse effects of substance use disorders. Epigenetic clocks have shown accelerated aging in blood samples from individuals with AUD. However, no systematic evaluation of biological age measures in AUD across different tissues and brain regions has been undertaken. METHODS: As markers of biological aging (BioAge markers), we assessed Levine's and Horvath's epigenetic clocks, DNA methylation telomere length (DNAmTL), telomere length (TL), and mitochondrial DNA copy number (mtDNAcn) in postmortem brain samples from Brodmann Area 9 (BA9), caudate nucleus, and ventral striatum (N = 63-94), and in whole blood samples (N = 179) of individuals with and without AUD. To evaluate the association between AUD status and BioAge markers, we performed linear regression analyses while adjusting for covariates. RESULTS: The majority of BioAge markers were significantly associated with chronological age in all samples. Levine's epigenetic clock and DNAmTL were indicative of accelerated biological aging in AUD in BA9 and whole blood samples, while Horvath's showed the opposite effect in BA9. No significant association of AUD with TL and mtDNAcn was detected. Measured TL and DNAmTL showed only small correlations in blood and none in brain. CONCLUSIONS: The present study is the first to simultaneously investigate epigenetic clocks, telomere length, and mtDNAcn in postmortem brain and whole blood samples in individuals with AUD. We found evidence for accelerated biological aging in AUD in blood and brain, as measured by Levine's epigenetic clock, and DNAmTL. Additional studies of different tissues from the same individuals are needed to draw valid conclusions about the congruence of biological aging in blood and brain.
RESUMO
Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.
Assuntos
Ordem de Nascimento , Metilação de DNA , Criança , Feminino , Humanos , Recém-Nascido , Gravidez , Epigênese Genética , EpigenômicaRESUMO
Worldwide trends to delay childbearing have increased parental ages at birth. Older parental age may harm offspring health, but mechanisms remain unclear. Alterations in offspring DNA methylation (DNAm) patterns could play a role as aging has been associated with methylation changes in gametes of older individuals. We meta-analyzed epigenome-wide associations of parental age with offspring blood DNAm of over 9500 newborns and 2000 children (5-10 years old) from the Pregnancy and Childhood Epigenetics consortium. In newborns, we identified 33 CpG sites in 13 loci with DNAm associated with maternal age (PFDR < 0.05). Eight of these CpGs were located near/in the MTNR1B gene, coding for a melatonin receptor. Regional analysis identified them together as a differentially methylated region consisting of 9 CpGs in/near MTNR1B, at which higher DNAm was associated with greater maternal age (PFDR = 6.92 × 10-8) in newborns. In childhood blood samples, these differences in blood DNAm of MTNR1B CpGs were nominally significant (p < 0.05) and retained the same positive direction, suggesting persistence of associations. Maternal age was also positively associated with higher DNA methylation at three CpGs in RTEL1-TNFRSF6B at birth (PFDR < 0.05) and nominally in childhood (p < 0.0001). Of the remaining 10 CpGs also persistent in childhood, methylation at cg26709300 in YPEL3/BOLA2B in external data was associated with expression of ITGAL, an immune regulator. While further study is needed to establish causality, particularly due to the small effect sizes observed, our results potentially support offspring DNAm as a mechanism underlying associations of maternal age with child health.