Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Microbiol ; 19(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27794208

RESUMO

Obesity is a major global public health concern. Immune responses implicated in obesity also control certain infections. We investigated the effects of high-fat diet-induced obesity (DIO) on infection with the Lyme disease bacterium Borrelia burgdorferi in mice. DIO was associated with systemic suppression of neutrophil- and macrophage-based innate immune responses. These included bacterial uptake and cytokine production, and systemic, progressive impairment of bacterial clearance, and increased carditis severity. B. burgdorferi-infected mice fed normal diet also gained weight at the same rate as uninfected mice fed high-fat diet, toll-like receptor 4 deficiency rescued bacterial clearance defects, which greater in female than male mice, and killing of an unrelated bacterium (Escherichia coli) by bone marrow-derived macrophages from obese, B. burgdorferi-infected mice was also affected. Importantly, innate immune suppression increased with infection duration and depended on cooperative and synergistic interactions between DIO and B. burgdorferi infection. Thus, obesity and B. burgdorferi infection cooperatively and progressively suppressed innate immunity in mice.


Assuntos
Borrelia burgdorferi/imunologia , Doença de Lyme/imunologia , Obesidade/imunologia , Animais , Citocinas/sangue , Dieta Hiperlipídica/efeitos adversos , Feminino , Tolerância Imunológica , Imunidade Inata , Doença de Lyme/patologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Miocardite/imunologia , Miocardite/microbiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Obesidade/etiologia , Obesidade/microbiologia
2.
Front Microbiol ; 8: 292, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28286500

RESUMO

Obese individuals more frequently suffer from infections, as a result of increased susceptibility to a number of bacterial pathogens. Furthermore, obesity can alter antibiotic treatment efficacy due to changes in drug pharmacokinetics which can result in under-dosing. However, studies on the treatment of bacterial infections in the context of obesity are scarce. To address this research gap, we assessed efficacy of antibiotic treatment in diet-induced obese mice infected with the Lyme disease pathogen, Borrelia burgdorferi. Diet-induced obese C3H/HeN mice and normal-weight controls were infected with B. burgdorferi, and treated during the acute phase of infection with two doses of tigecycline, adjusted to the weights of diet-induced obese and normal-weight mice. Antibiotic treatment efficacy was assessed 1 month after the treatment by cultivating bacteria from tissues, measuring severity of Lyme carditis, and quantifying bacterial DNA clearance in ten tissues. In addition, B. burgdorferi-specific IgG production was monitored throughout the experiment. Tigecycline treatment was ineffective in reducing B. burgdorferi DNA copies in brain. However, diet-induced obesity did not affect antibiotic-dependent bacterial DNA clearance in any tissues, regardless of the tigecycline dose used for treatment. Production of B. burgdorferi-specific IgGs was delayed and attenuated in mock-treated diet-induced obese mice compared to mock-treated normal-weight animals, but did not differ among experimental groups following antibiotic treatment. No carditis or cultivatable B. burgdorferi were detected in any antibiotic-treated group. In conclusion, obesity was associated with attenuated and delayed humoral immune responses to B. burgdorferi, but did not affect efficacy of antibiotic treatment.

3.
PLoS One ; 11(6): e0158019, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27340827

RESUMO

Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.


Assuntos
Borrelia burgdorferi/imunologia , Hiperglicemia/complicações , Imunidade Inata , Doença de Lyme/complicações , Doença de Lyme/imunologia , Neutrófilos/imunologia , Animais , Artrite/etiologia , Artrite/patologia , Carga Bacteriana , Citotoxicidade Imunológica , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Feminino , Humanos , Hiperglicemia/etiologia , Incidência , Doença de Lyme/microbiologia , Masculino , Camundongos , Camundongos Knockout , Viabilidade Microbiana/imunologia , Miocardite/etiologia , Miocardite/patologia , Ativação de Neutrófilo/imunologia , Neutrófilos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA