Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(24): 10021-10027, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843243

RESUMO

Although oxygen reduction reaction (ORR) as an effective signal amplification strategy has been extensively investigated for the improvement of sensitivity of electrochemical sensors, their activity and stability are still a great challenge. Herein, single-atom Fe (FeSA) and Fe nanoparticles (FeNP) on nitrogen-doped carbon (FeSA/FeNP) catalysts demonstrate a highly active and stable ORR performance, thus achieving the sensitive and stable electrochemical sensing of organophosphorus pesticides (OPs). Experimental investigations indicate that FeNP in FeSA/FeNP can improve the ORR activity by adjusting the electronic structure of FeSA active sites. Besides, owing to the excellent catalase-like activity, FeSA/FeNP can rapidly consume in situ generated H2O2 in the ORR process and avoid the leakage of active sites, thereby improving the stability of ORR. Utilizing the excellent ORR performance of FeSA/FeNP, an electrochemical sensor for OPs is established based on the thiocholine-induced poison of the active sites, demonstrating satisfactory sensitivity and stability. This work provides new insight into the design of high performance ORR catalysts for sensitive and stable electrochemical sensing.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124527, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38815313

RESUMO

Viscosity is a parameter used to measure the fluidity of liquids and a key indicator in evaluating the states of body fluid in biological tissues and lesions. Most traditional detection methods have many drawbacks such as a short emission wavelength and interference by background fluorescence. Inspired by the multiple double bond structure of retinal, a novel pH and viscosity dual-response fluorescent probe (Rh-TR) was constructed in this study. Rh-TR exhibited two emission signals centered at 510 and 660 nm. As the pH of the phosphate-buffered saline increased, the fluorescence at 510 nm increased by about 124-fold, while the change in fluorescence at 660 nm was not obvious. When detecting the change in viscosity using the probe, the fluorescence at 510 nm decreased by about 85 %, while the fluorescence at 660 nm increased by over 20-fold. The probe also showed high selectivity and little toxicity. As demonstrated by the biological imaging experiment, the probe successfully imaged changes in the pH and viscosity of cells and in a live animal model of zebrafish. Considering the unique structure of Rh-TR with retinal and its pH- and viscosity-switchable spectral property, the probe may find further application in detecting viscosity-related diseases and industrial detection.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Concentração de Íons de Hidrogênio , Viscosidade , Animais , Humanos , Espectrometria de Fluorescência , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA