RESUMO
BACKGROUND: Long non-coding RNAs (lncRNAs) are closely related to the occurrence and development of cancer. Abnormally expressed lncRNA can be used as a diagnostic marker for cancer. In this study, we aim to investigate the clinical significance of MIR99AHG expression in lung adenocarcinoma (LUAD), and its biological roles in LUAD progression. METHODS: The relative expression of MIR99AHG in LUAD tissues and cell lines was analyzed using public databases and RT-qPCR. The biological functions of MIR99AHG were investigated using a loss-of-function approach. The effect of MIR99AHG on lung fibrosis was assessed by scratch assay, invasion assay and lung fibrosis rat model. FISH, luciferase reporter assay and immunofluorescence were performed to elucidate the underlying molecular mechanisms. RESULTS: LncRNA MIR99AHG expression level was downregulated in LUAD tissues and cell lines. Low MIR99AHG levels were associated with poorer patient overall survival. Functional analysis showed that MIR99AHG is associated with the LUAD malignant phenotype in vitro and in vivo. Further mechanistic studies showed that, MIR99AHG functions as a competitive endogenous RNA (ceRNA) to antagonize miR-136-5p-mediated ubiquitin specific protease 4 (USP4) degradation, thereby unregulated the expression of angiotensin-converting enzyme 2 (ACE2), a downstream target gene of USP4, which in turn affected alveolar type II epithelial cell fibrosis and epithelial-mesenchymal transition (EMT). In summary, the MIR99AHG/miR-136-5p/USP4/ACE2 signalling axis regulates lung fibrosis and EMT, thus inhibiting LUAD progression. CONCLUSION: This study showed that downregulated MIR99AHG leads to the development of pulmonary fibrosis. Therefore, overexpression of MIR99AHG may provide a new approach to preventing LUAD progression.
Assuntos
Adenocarcinoma , Neoplasias Pulmonares , MicroRNAs , Fibrose Pulmonar , RNA Longo não Codificante , Adenocarcinoma/genética , Enzima de Conversão de Angiotensina 2 , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose Pulmonar/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismoRESUMO
Thyroid cancer remains the most common endocrine malignancy worldwide, and its incidence has steadily increased over the past four years. Papillary Thyroid Cancer (PTC) is the most common differentiated thyroid cancer, accounting for 80-85% of all thyroid cancers. Mitochondrial proteins (MRPs) are an important part of the structural and functional integrity of the mitochondrial ribosomal complex. It has been reported that MRPL9 is highly expressed in liver cancer and promotes cell proliferation and migration, but it has not been reported in PTC. In the present study we found that MRPL9 was highly expressed in PTC tissues and cell lines, and lentivirus-mediated overexpression of MRPL9 promoted the proliferation and migration ability of PTC cells, whereas knockdown of MRPL9 had the opposite effect. The interaction between MRPL9 and GGCT (γ-glutamylcyclotransferase) was found by immunofluorescence and co-immunoprecipitation experiments (Co-IP). In addition, GGCT is highly expressed in PTC tissues and cell lines, and knockdown of GGCT/MRPL9 in vivo inhibited the growth of subcutaneous xenografts in nude mice and inhibited the formation of lung metastases. Mechanistically, we found that knockdown of GGCT/MRPL9 inhibited the MAPK/ERK signaling pathway. In conclusion, our study found that the interaction of GGCT and MRPL9 modulates the MAPK/ERK pathway, affecting the proliferation and migration of PTC cells. Therefore, GGCT/MRPL9 may serve as a potential biomarker for PTC monitoring and PTC treatment.
Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias da Glândula Tireoide , gama-Glutamilciclotransferase , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , gama-Glutamilciclotransferase/genéticaRESUMO
Gastric cancer (GC) has become the first malignant tumor with highest incidence rate and mortality of cancer in China, finding therapeutic targets for gastric cancer is of great significant for improving the survival rate of patients with GC. Recently, many of studies have shown that LncRNAs is involved in multiple biological progresses in the development of GC. This study, we screened for abnormally high expression of LncSHANK3 in GC through the TCGA database, and found that LncSHANK3 sponge adsorbs miR-4530, further competing with MNX1 and binding to miR-4530. We demonstrated the interaction between LncSHANK3 and miR-4530 through luciferase reporting analysis, with miR-4530 negatively regulating MNX1.Through CCK8, colony formation, transwell, and wound healing assays, it was found that LncSHANK3 affects the occurrence of GC through cell proliferation, migration and invasion. In conclusion, LncSHANK3/miR-4530/MNX1 axis is a potential mechanism for the treatment of GC.
RESUMO
Numerous studies have found a relationship between cancer formation and aberrant microRNA expression, however the biological significance of miR-497-5p in glioblastoma (GBM) is still unknown. Compared to normal brain glial cells, miR-497-5p expression in GBM tissues was substantially lower in our study. The microRNA miR-497-5p targets R-spondin 2 (RSPO2) only when it is present. RSPO2 silencing has the same effect on GBM cells as miR-497-5p silencing, as demonstrated before. Additional mechanistic investigations have shown that miR-497-5p suppresses the Wnt/ß-catenin signaling pathway by targeting RSPO2 to reduce cell proliferation, migration, and invasion. A negative correlation was discovered between MiR-497-5p and RSPO2 in 37 of the GBM tumors studied. MiR-497-5p-RSPO2 axis controls Wnt/ß-catenin signaling and plays a function in GBM carcinogenesis, suggesting that it may be a therapeutic target to reduce GBM growth, as shown by our research findings.
RESUMO
Lung adenocarcinoma is a malignant and fatal respiratory disease. However, due to its complex pathogenesis and poorly effective therapeutic options, accurate early diagnosis and prognosis remain elusive. Now, there is increasing evidence that tumor stem cells are involved in tumorigenesis, metastasis, relapse, resistance to chemotherapy and radiotherapy and are one of the reasons why tumors cannot be cured. The mRNA expression based-stemness index (mRNAsi) is a parameter obtained by Malta and his colleagues applying innovative one-class logistic regression machine learning algorithm (OCLR) on mRNA expression in normal stem cells and their progeny. It is a valid evaluation parameter and is currently employed to evaluate the degree of differentiation of a certain tumor. In this study, we first used WGCNA and the software Cytoscape to obtain key modules and hub genes. We then applied LASSO regression analysis to calculate the genes in the key module to obtain a six-gene risk model. Moreover, the accuracy of this model was validated. Finally, we took the intersection of hub genes and risk genes and validated CENPA as both a tumor stemness regulator and a tumor prognostic factor in lung cancer.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/metabolismo , Histonas , Humanos , Neoplasias Pulmonares/patologia , Recidiva Local de Neoplasia , Prognóstico , RNA Mensageiro/metabolismoRESUMO
The endocrine therapy resistance of breast cancer is the difficulty and challenge to be urgently solved in the current treatment. In this study, we examined the effects of noncoding RNA LINC00094 and miR-19a-3p on breast cancer in vivo and in vitro by RT-QPCR, Western Blot, luciferase assay, immunofluorescence and drug sensitivity tests. The plasma level of CYP19A1 in patients with breast cancer resistance was lower than that in drug sensitive patients. Compared with normal subjects, miR-19a-3p was highly expressed in plasma of patients with breast cancer. miR-19a-3p is highly expressed in estrogen receptor positive breast cancer cells. The expression of miR-19a-3p promoted the migration and EMT of breast cancer cells and reduced the sensitivity of breast cancer to Letrozole. LINC00094 sponge adsorbed miR-19a-3p. LINC00094 promotes the expression of CYP19A1, the target gene of miR-19a-3p, and inhibits the EMT process of breast cancer, ultimately promoting the sensitivity of ER-positive breast cancer cells to Letrozole. This study found a new mechanism of Letrozole sensitivity in ER positive breast cancer.
Assuntos
Neoplasias da Mama , MicroRNAs , Aromatase/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Letrozol , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
Liver cancer is a malignant cancer phenotype for which there currently remains a lack of reliable biomarkers and therapeutic targets for disease management. Tryptophan 2,3dioxygenase (TDO2), a hemecontaining polyoxygenase enzyme, is primarily expressed in cells of the liver and nervous systems. In the present study, through the combination of cancer bioinformatics and analysis of clinical patient samples, it was shown that TDO2 expression in liver cancer tissue samples was significantly higher than that in normal tissues, and liver cancer patients with high TDO2 expression had a poor prognosis. Mechanistic studies on liver cancer cells showed that TDO2 promoted cancer cell migration and invasion via signal transduction through the Wnt5a pathway. Such regulation impacted the expression of cancerassociated biomarkers, such as matrix metalloprotease 7 (MMP7) and the cell adhesion receptor CD44. Treatment with a calcium channel blocker (azelnidipine) reduced TDO2 levels and inhibited liver cancer cell migration and invasion. A mouse xenograft cancer model showed that TDO2 promoted tumorigenesis. Furthermore, azelnidipine treatment to downregulate TDO2 also decreased liver cancer development in this mouse cancer model. TDO2 is thus not only a useful liver cancer biomarker but a potential drug target for management of liver cancer.
Assuntos
Neoplasias Hepáticas , Triptofano Oxigenase , Animais , Biomarcadores Tumorais , Linhagem Celular , Movimento Celular , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos , Triptofano/metabolismo , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo , Proteína Wnt-5a/genéticaRESUMO
Tissue inhibitor matrix metalloproteinase 1 (TIMP1) has been reported to act as a tumor oncogene in colon cancer. However, little is known about the biological role of TIMP1 in gastric cancer. In this study, we found that the expression of TIMP1 in GC tissues was upregulated compared with the normal gastric tissues. TIMP1 was confirmed as a direct target of miR-6745 and silencing TIMP1 mimicked the effects of miR-6745 in GC cells. Further mechanism studies have shown that miR-6745 inhibits the Wnt/ß-catenin pathway by targeting TIMP1, thereby inhibiting cell proliferation, migration and invasion. In addition, through the analysis of GC tissues, a negative correlation between miR-6745 and TIMP1 was found in 42 GC tissues. Our findings indicate that the miR-6745-TIMP1 axis regulates Wnt/ßcatenin signaling and participates in GC tumorigenesis and provide a potential therapeutic target for preventing GC progression.
Assuntos
MicroRNAs/genética , Neoplasias Gástricas , Inibidor Tecidual de Metaloproteinase-1/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica/genética , Estômago/metabolismo , Estômago/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Via de Sinalização WntRESUMO
Cancer development and progression can be regulated by the levels of endogenous factors. Gastric cancer is an aggressive disease state with poor patient prognosis, needing the development of new diagnostics and therapeutic strategies. We investigated the close association between follistatin-like 3 (FSTL3) and different cancers, and focused on its role in gastric cancer cell function. Using cancer bioinformatics, we found that FSTL3 expression is elevated in a large majority of the 33 cancers we analyzed in publicly available cancer databases. Elevated levels of FSTL3 is associated with poor patient prognosis in gastric cancer. In a comparison of normal gastric epithelial cells and gastric cancer cell lines, FSTL3 expression was consistently elevated in gastric cancer cells. Overexpression of FSTL3 promoted gastric cancer cell viability, proliferation and migration. Conversely, FSTL3 knockdown inhibits these cellular processes. Using bioinformatics, we found that the FSTL3 mRNA has a potential binding site in the 3'-UTR for a small microRNA, miR-486-5p. Further bioinformatics revealed significant negative correlation between FSTL3 and miR-486-5p levels. Using luciferase reporter constructs, we provide evidence that the 3'UTR from the FSTL3 mRNA can confer downregulation in the presence of miR-486-5p. These studies lead us to conclude that FSTL3 has oncogenic properties and increased expression of this gene product promotes gastric cancer development and progression.