Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2406829, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370665

RESUMO

The nickel hydroxide-based (Ni(OH)2) methanol-to-formate electrooxidation reaction (MOR) performance is greatly related to the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states. Hence, optimizing the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states to achieve enhanced MOR activities are highly desired. Here, cobalt (Co) and iron (Fe) doping are used to modify the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states. Although both dopants can broaden the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital; however, Co doping leads to an elevation in the energy level of d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ highest occupied crystal orbital (HOCO), whereas Fe doping results in its reduction. Such a discrepancy in the regulation of d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states stems from the disparate partial electron transfer mechanisms amongst these transition metal ions, which possess distinct energy level and occupancy of d orbitals. Motivated by this finding, the NiCoFe hydroxide is prepared and exhibited an excellent MOR performance. The results showed that the Co dopants effectively suppress the partial electron transfer from Ni to Fe, combined with the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital broadening induced by NiO6 octahedra distortion, endowing NiCoFe hydroxide with high d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ HOCO and broad d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital. It is believed that the work gives an in-depth understanding on d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states regulation in Ni(OH)2, which is beneficial for designing Ni(OH)2-based catalysts with high MOR performance.

2.
Angew Chem Int Ed Engl ; 63(25): e202404730, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38618864

RESUMO

The anodic methanol oxidation reaction (MOR) plays a crucial role in coupling with the cathodic hydrogen evolution reaction (HER) and enables the sustainable production of the high-valued formate. Nickel-based hydroxide (Ni(OH)2) as MOR electrocatalyst has attracted enormous attention. However, the key factor determining the intrinsic catalytic activity remains unknown, which significantly hinders the further development of Ni(OH)2 electrocatalyst. Here, we found that the d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ electronic state within antibonding bands plays a decisive role in the whole MOR process. The onset potential depends on the deprotonation ability (Ni2+ to Ni3+), which was closely related to the band center of d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ orbital. The closer of d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ orbital to the Fermi level showed the stronger the deprotonation ability. Meanwhile, in the high potential region, the broadening of d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ orbital would facilitate the electron transfer from methanol to catalysts (Ni3+ to Ni2+), further enhancing the catalytic properties. Our work for the first time clarifies the intrinsic relationship between d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ electronic state and the MOR activities, which adds a new layer of understanding to the methanol electrooxidation research scene.

3.
Angew Chem Int Ed Engl ; 63(42): e202409912, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39051899

RESUMO

Understanding the origin of surface reconstruction is crucial for developing highly efficient lattice oxygen oxidation mechanism (LOM) based spinel oxides. Traditionally, the reconstruction has been achieved through electrochemical procedures, such as cyclic voltammetry (CV), linear sweep voltammetry (LSV). In this work, we found that the surface reconstruction in LOM-based CoFe0.25Al1.75O4 catalyst was an irreversible oxygen redox chemical reaction. And a lower oxygen vacancy formation energy (EO-V) could benefit the combination of the activated lattice oxygen atoms with adsorbed water molecular. Motivated by this finding, a strategy of phase boundary construction from Co tetrahedral to octahedral was employed to decrease EO-V in CoFe0.25Al1.75O4. The results showed that as the Co octahedral occupancy ratio rose to 64 %, a 3.5 nm-thick reconstructed layer formed on the catalyst surface with a 158 mV decrease in overpotential. Further experiments indicated that the coexistence of tetrahedral-octahedral (O-T) phase would result in lattice mismatch, promoting non-bonding oxygen states and lowering EO-V. Then more active lattice oxygen combined with H2O molecules to generate hydroxide ions (OH-), followed by soluble cation leaching, which enhanced the reconstruction process. This work provided new insights into the relationship between the intrinsic structure of pre-catalysts and surface reconstruction in LOM-based spinel electrocatalysts.

4.
Angew Chem Int Ed Engl ; 63(44): e202411517, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39039784

RESUMO

Ethylene glycol electro-oxidation reaction (EGOR) on nickel-based hydroxides (Ni(OH)2) represents a promising strategy for generating value-added chemicals, i.e. formate and glycolate, and coupling water-electrolytic hydrogen production. The high product selectivity was one of the most significant area of polyols electro-oxidation process. Yet, developing Ni(OH)2-based EGOR electrocatalyst with highly selective product remains a challenge due to the unclear cognition about the EGOR mechanism. Herein, Mn-doped Ni(OH)2 catalysts were utilized to investigate the EGOR mechanism. Experimental and calculation results reveal that the electronic states of eg* band play an important role in the catalytic performance and the product selectivity for EGOR. Broadening the eg* band could effectively enhance the adsorption capacity of glyoxal intermediates. On the other hand, this enhanced adsorption could lead to reduced side reactions associated with glycolate formation, simultaneously promoting the cleavage of C-C bonds. Consequently, the selectivity for formate was notably augmented by these enhancements. This work offers new insights into the regulation of catalyst electronic states for improving polyol electrocatalytic activity and product selectivity.

5.
Small ; 19(50): e2304377, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649212

RESUMO

Solid-state anion exchange method is easy to handle and beneficial to improve stability of CsPbX3 (X = Cl, Br, I) perovskites nanocrystals (NCs) with respect to anion exchange in liquid phase. However, the corresponding exchange rate is rather slow due to the limited diffusion rate of anions from solid phases, resulting in mixed-halide perovskite NCs. Herein,  a fast and reversible post-synthetic quasi-solid-state anion exchange method in CsPbX3 NCs with inorganic potassium halide KX salts/polyvinylpyrrolidone (PVP) thin film is firstly reported. Original morphology of the exchanged NCs is well-preserved for all samples. Complete anion exchange from Br- to Cl- or I- is successfully achieved in CsPbX3 NCs within ≈20 min through possible vacancies-assisted ion exchange mechanism, under ambient conditions and vice versa. Particularly, Br- -exchanged CsPbCl3 and CsPbI3 NCs exhibit improved optical properties. Encouraged by the attractive fluorescence and persistent luminescence as well as good stability of the resulted CsPbX3 NCs, an effective dual-mode information storage-reading application is demonstrated.  It is believed that this method can open a new avenue for the synthesis of other direct-synthesis challenging quantum-confined perovskite NCs/nanoplates/nanodisks or CsSnX3 NCs/thin film and provide an opportunity for advanced information storage compatible for practical applications.

6.
Angew Chem Int Ed Engl ; 62(21): e202218599, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36929540

RESUMO

A fundamental understanding of surface reconstruction process is pivotal to developing highly efficient lattice oxygen oxidation mechanism (LOM) based electrocatalysts. Traditionally, the surface reconstruction in LOM based metal oxides is believed as an irreversible oxygen redox behavior, due to the much slower rate of OH- refilling than that of oxygen vacancy formation. Here, we found that the surface reconstruction in LOM based metal oxides is a spontaneous chemical reaction process, instead of an electrochemical reaction process. During the chemical process, the lattice oxygen atoms were attacked by adsorbed water molecules, leading to the formation of hydroxide ions (OH- ). Subsequently, the metal-site soluble atoms leached from the oxygen-deficient surface. This work also suggests that the enhancement of surface hydrophilicity could accelerate the surface reconstruction process. Hence, such a finding could add a new layer for the understanding of surface reconstruction mechanism.

7.
Angew Chem Int Ed Engl ; 62(37): e202309107, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37470435

RESUMO

A comprehensive understanding of surface reconstruction was critical to developing high performance lattice oxygen oxidation mechanism (LOM) based perovskite electrocatalysts. Traditionally, the primary determining factor of the surface reconstruction process was believed to be the oxygen vacancy formation energy. Hence, most previous studies focused on optimizing composition to reduce the oxygen vacancy formation energy, which in turn facilitated the surface reconstruction process. Here, for the first time, we found that adding oxyanions (SO4 2- , CO3 2- , NO3 - ) into the electrolyte could effectively regulate the solid-liquid interface, significantly accelerating the surface reconstruction process and enhancing oxygen evolution reaction (OER) activities. Further studies indicated that the added oxyanions would adsorb onto the solid-liquid interface layer, disrupting the dynamic equilibrium between the adsorbed OH- ions and the OH- ions generated during surface reconstruction process. As such, the OH- ions generated during surface reconstruction process could be more readily released into the electrolyte, thereby leading to an acceleration of the surface reconstruction. Thus, it was expected that our finding would provide a new layer of understanding to the surface reconstruction process in LOM-based perovskite electrocatalysts.

8.
Phys Chem Chem Phys ; 24(44): 27009-27022, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36250378

RESUMO

An electric double layer (EDL) in a polyelectrolyte solution plays a crucial role in diverse fields ranging from physical and life sciences to modern technologies. Due to the nonnegligible excluded volume effects, chain connectivity and complex intermolecular interactions, the EDLs in (confined) polyelectrolyte solutions display distinct features compared to those in simple electrolyte solutions. Here, we conducted a systematic study on the characteristics of EDLs in confined polyelectrolyte solutions for salt-free and low salt concentration systems using self-consistent field theory. Results suggest that the characteristic length scales measuring the EDL structures are different for positively and negatively charged surfaces. The former is the same as in the electrolyte solutions, while the latter is smaller due to the accumulation of oppositely charged polyelectrolytes near the surface. Furthermore, for low surface charge densities, a scaling law for the electrostatic energy stored in polyelectrolyte EDLs (in units of mJ m-2) was found to be U ∝ |σ|ν with ν ∼ 2-2.7, which differs from the electrolyte EDLs with ν ∼ 2; however, such a scaling law breaks down for high surface charge densities.

9.
ACS Appl Mater Interfaces ; 16(39): 52624-52632, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39308079

RESUMO

Reducing the level of annihilation of electrons and holes is considered to be a feasible strategy to promote piezocatalytic activities. But this strategy is only achieved through cumbersome sample preparation technologies, hindering its practical applications. Herein, we introduce a simple and efficient technique, the conventional solid-state method, to engineer a composite interfacial electric field to solve this problem, and validate it in a composite piezocatalysis composed of potassium sodium niobate ((K, Na)NbO3, KNN) and multiwalled carbon nanotubes (MWCNTs). The KNN-1CNT sample, a piezocatalyst doped with 1 wt % MWCNTs, shows a degradation rate (k) of 127 × 10-3 min-1 for Rhodamine B (RhB) dye and a hydrogen peroxide (H2O2) production rate of 36 µmol/h, about 27 times more than a reported ferroelectric composite piezocatalyst. The excellent piezocatalytic activities are attributed to the good crystallinity, slightly increased oxygen vacancies, and especially the optimal composite interface electric field. Therefore, our proposed method provides a paradigm for obtaining large-scale perovskite piezocatalysts with high piezocatalytic activities.

10.
Chem Commun (Camb) ; 60(70): 9380-9383, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39129717

RESUMO

Perovskite oxides are promising catalysts for water oxidation. Herein, we constructed a Sr3CoFeWO9 triple perovskite with Co, Fe, and W atoms sharing octahedral positions. Thermally activated growth of an amorphous FeCoW oxyhydroxide layer on this perovskite pre-catalyst greatly enhanced the oxygen evolution reaction (OER) activities, reducing overpotential at 10 mA cm-2geo by 115 mV. This highlights the benefits of compositional design and structural reconstruction for efficient electrocatalytic materials.

11.
J Cancer ; 15(2): 508-525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169519

RESUMO

Background: CD27 is an immunological checkpoint gene, plays a critical function inInhibition or activation of cancer immunity. The CD27/CD27L axis is its pathway of action. Therefore, our goal was to examine the predictive role of CD27 in the clinical prognosis of 33 cancer types and its functions in cancer progression, as well as explore the link between pan-cancer CD27 gene expression and immune infiltration. Methods: By comprehensive use of datasets and methods from TCGA, cBioPortal, GTEx, HPA, KM-plotter, Spearman, CellMinerTM, R packages and RT-qPCR, we delved deeper into the potential impact of the CD27 on cancer development. These include expression differences, immune infiltration, matrix infiltration, gene mutations, DNA methylation, signaling pathways, TMB, MSI, and prognosis. Also, we explored CD27 interactions with different drugs. Results: The results showed that, mutated CD27 was highly expressed in most cancers. The CD27 showed strong diagnostic value in 4 cancers and marked a positive prognosis for CESC, intracervical adenocarcinoma, HNSC, and endometrial cancer, and a poor prognosis for UVM. In addition, CD27 affects multiple immune and inflammatory signaling pathways and is positively correlated with immune cell infiltration, T cell differentiation, macrophage M1 polarization, stromal infiltration, and drug sensitivity. DNA methylation is involved in CD27 expression in cancer. Conclusion: CD27, which is mutated in cancers and appears widely highly expressed and altered tumor immune invasion and stromal invasion by affecting multiple immune-related and inflammation signaling pathways, plays a significant role in CESC, HNSC, UCEC and UVM, and may be used as a therapeutic target for related cancers.

12.
ChemSusChem ; 17(2): e202301195, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37743254

RESUMO

Electrochemical water splitting to generate hydrogen energy fills a gap in the intermittency issues for wind and sunlight power. Transition metal (TM) oxides have attracted significant interest in water oxidation due to their availability and excellent activity. Typically, the transitional metal oxyhydroxides species derived from these metal oxides are often acknowledged as the real catalytic species, due to the irreversible structural reconstruction. Hence, in order to innovatively design new catalyst, it is necessary to provide a comprehensive understanding for the origin of surface reconstruction. In this review, the most recent developments in the reconstruction of transition metal-based oxygen evolution reaction electrocatalysts were introduced, and various chemical driving forces behind the reconstruction mechanism were discussed. At the same time, specific strategies for modulating pre-catalysts to achieve controllable reconfiguration, such as metal substituting, increase of structural defect sites, were summarized. At last, the issues for the further understanding and optimization of transition metal oxides compositions based on structural reconstruction were provided.

13.
Carbohydr Polym ; 336: 122080, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670772

RESUMO

Traditional Chinese medicine polysaccharides have numerous biological activities with broad applications in the biomedical industries. However, a clear understanding of the pharmacological activities of compound polysaccharides with multi-component structures remain challenging. This study aimed to investigate the immune boosting effect of compound polysaccharides on the influenza vaccine and assess the preliminary structure-activity relationship. The compound polysaccharide (CP) was isolated from the combined Chinese herbs lentinan, pachymaran and tremellan, and purified by gradient ethanol precipitation to obtain its subcomponents of CP-20, CP-40, CP-60, and CP-80 with decreasing molecular weights. These polysaccharides were mainly composed of glucans with different linkage patterns, including α-(1 â†’ 3)-glucan, α-(1 â†’ 4)-glucan and ß-(1 â†’ 6)-glucan. A significant improvement was observed in the survival of mice vaccinated with inactivated (IAV) vaccine and the isolated polysaccharides as adjuvants. A reduction in the pulmonary virus titer and weight loss were also observed. Moreover, CP-40 and CP-60, as well as the original CP, significantly enhanced the serum anti-IAV antibody titers and interleukin IL-2, IL-5, and IL-6 concentrations. These preliminary results indicate the immune boosting effect of the compound polysaccharides is highly relevant to the specific structural properties of the subcomponent, and CP-40 is worthy of further exploration as a glycan adjuvant for the IAV vaccine.


Assuntos
Adjuvantes Imunológicos , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Polissacarídeos , Vacinas de Produtos Inativados , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/farmacologia , Animais , Vacinas de Produtos Inativados/imunologia , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Citocinas/metabolismo
14.
bioRxiv ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38948787

RESUMO

Background: Transmission electron microscopy (TEM) images can visualize kidney glomerular filtration barrier ultrastructure, including the glomerular basement membrane (GBM) and podocyte foot processes (PFP). Podocytopathy is associated with glomerular filtration barrier morphological changes observed experimentally and clinically by measuring GBM or PFP width. However, these measurements are currently performed manually. This limits research on podocytopathy disease mechanisms and therapeutics due to labor intensiveness and inter-operator variability. Methods: We developed a deep learning-based digital pathology computational method to measure GBM and PFP width in TEM images from the kidneys of Integrin-Linked Kinase (ILK) podocyte-specific conditional knockout (cKO) mouse, an animal model of podocytopathy, compared to wild-type (WT) control mouse. We obtained TEM images from WT and ILK cKO littermate mice at 4 weeks old. Our automated method was composed of two stages: a U-Net model for GBM segmentation, followed by an image processing algorithm for GBM and PFP width measurement. We evaluated its performance with a 4-fold cross-validation study on WT and ILK cKO mouse kidney pairs. Results: Mean (95% confidence interval) GBM segmentation accuracy, calculated as Jaccard index, was 0.73 (0.70-0.76) for WT and 0.85 (0.83-0.87) for ILK cKO TEM images. Automated and manual GBM width measurements were similar for both WT (p=0.49) and ILK cKO (p=0.06) specimens. While automated and manual PFP width measurements were similar for WT (p=0.89), they differed for ILK cKO (p<0.05) specimens. WT and ILK cKO specimens were morphologically distinguishable by manual GBM (p<0.05) and PFP (p<0.05) width measurements. This phenotypic difference was reflected in the automated GBM (p<0.05) more than PFP (p=0.06) widths. Conclusions: These results suggest that certain automated measurements enabled via deep learning-based digital pathology tools could distinguish healthy kidneys from those with podocytopathy. Our proposed method provides high-throughput, objective morphological analysis and could facilitate podocytopathy research and translate into clinical diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA