Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(24): 10074-10083, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848224

RESUMO

Numerous high-performance nanotechnologies have been developed, but their practical applications are largely restricted by the nanomaterials' low stabilities and high operation complexity in aqueous substrates. Herein, we develop a simple and high-reliability hydrogel-based nanotechnology based on the in situ formation of Au nanoparticles in molybdenum disulfide (MoS2)-doped agarose (MoS2/AG) hydrogels for electrophoresis-integrated microplate protein recognition. After the incubation of MoS2/AG hydrogels in HAuCl4 solutions, MoS2 nanosheets spontaneously reduce Au ions, and the hydrogels are remarkably stained with the color of as-synthetic plasmonic Au hybrid nanomaterials (Au staining). Proteins can precisely mediate the morphologies and optical properties of Au/MoS2 heterostructures in the hydrogels. Consequently, Au staining-based protein recognition is exhibited, and hydrogels ensure the comparable stabilities and sensitivities of protein analysis. In comparison to the fluorescence imaging and dye staining, enhanced sensitivity and recognition performances of proteins are implemented by Au staining. In Au staining, exfoliated MoS2 semiconductors directly guide the oriented growth of plasmonic Au nanostructures in the presence of formaldehyde, showing environment-friendly features. The Au-stained hydrogels merge the synthesis and recognition applications of plasmonic Au nanomaterials. Significantly, the one-step incubation of the electrophoretic hydrogels leads to high simplicity of operation, largely challenging those multiple-step Ag staining routes which were performed with high complexity and formaldehyde toxicity. Due to its toxic-free, simple, and sensitive merits, the Au staining integrated with electrophoresis-based separation and microplate-based high-throughput measurements exhibits highly promising and improved practicality of those developing nanotechnologies and largely facilitates in-depth understanding of biological information.


Assuntos
Dissulfetos , Ouro , Hidrogéis , Molibdênio , Molibdênio/química , Dissulfetos/química , Ouro/química , Hidrogéis/química , Nanopartículas Metálicas/química , Eletroforese , Proteínas/análise , Proteínas/química
2.
Anal Chem ; 95(51): 18859-18870, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096265

RESUMO

Trivalent Au ions are easily reduced to be zerovalent atoms by coexisting reductant reagents, resulting in the subsequent accumulation of Au atoms and formation of plasmonic nanostructures. In the absence of stabilizers or presence of weak stabilizers, aggregative growth of Au nanoparticles (NPs) always occurs, and unregular multidimensional Au materials are consequently constructed. Herein, the addition of nanomole-level mercury ions can efficiently prevent the epitaxial accumulation of Au atoms, and separated Au NPs with mediated morphologies and superior plasmonic characteristics are obtained. Experimental results and theoretical simulation demonstrate the Hg-concentration-reliant formation of plasmonic nanostructures with their mediated sizes and shapes in the presence of weak reductants. Moreover, the sensitive plasmonic responses of reaction systems exhibit selectivity comparable to that of Hg species. As a concept of proof, polymeric carbon dots (CDs) were used as the initial reductant, and the reactions between trivalent Au and CDs were studies. Significantly, Hg atoms prevent the epitaxial accumulation of Au atoms, and plasmonic NPs with decreased sizes were in situ synthesized, corresponding to varied surface plasmonic resonance absorption performance of the CD-induced hybrids. Moreover, with the integration of sensing substrates of CD-doped hydrogels, superior response stabilities, analysis selectivity, and sensitivity of Hg2+ ions were achieved on the basis of the mercury-mediated in situ chemical reactions between trivalent Au ions and reductant CDs. Consequently, a high-performance sensing strategy with the use of Au NP-staining hydrogels (nanostaining hydrogels) was exhibited. In addition to Hg sensing, the nanostaining hydrogels facilitated by doping of emerging materials and advanced chem/biostrategies can be developed as high-performance on-site monitoring routes to various pollutant species.

3.
Langmuir ; 39(8): 3052-3061, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787386

RESUMO

The way of accurately regulating the growth of chiral plasmonics is of great importance for exploring the chirality information and improving its potential values. Herein, cysteine enantiomers modulate the anisotropic and epitaxial growth of gold nanoplasmonics on seeds of exfoliated MoS2 nanosheets. The heterostructural Au and MoS2 hybrids induced by enantiomeric cysteine are presented with chiroptical characteristics, dendritic morphologies, and plasmonic performances. Moreover, the synthesis, condition optimization, formation mechanism, and plasmonic properties of Au and MoS2 dendritic nanostructures are studied. The chirality characteristics are identified using the circular dichroism spectra and scanning electron microscopy. Time-resolved transmission electron microscopy and UV-vis spectra of the intermediate products captured are analyzed to confirm the formation mechanism of dendritic plasmonic nanostructures at heterostructural surfaces. The specific dendritic morphologies originate from the synergistic impacts of heterostructural MoS2 interfaces and enantiomeric cysteine-induced anisotropic manipulation. Significantly, the developed synthesis strategy of chiral nanostructures at heterostructural interfaces is highly promising in promoting the understanding of the plasmonic function and crucial chirality bioinformation.

4.
Small ; 14(7)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29356323

RESUMO

Liquid-phase exfoliation routes unavoidably generate 2D nanostructures with inhomogeneous morphologies. Herein, thickness-dependent sorting of exfoliated nanostructures is achieved via a treatment of differential-zone centrifugation in the surfactant aqueous phase. With this approach, homogeneous MoS2 nanosheets are obtained, and due to the intrinsic semiconducting characteristics, those 2D nanosheets are endowed with desired optical properties, rivaling classic gold nanoparticles in sensing applications. Furthermore, MoS2 nanosheets with high uniformity and chemical inertness are coupled with proteins, exhibiting high performance in stability and anti-interferences for bioanalysis. As a consequence of aggregation-induced steric effect, distinguishing running shifts of antibody-anchored conjugates in gel electrophoresis are visually responsive to those specific antigens. This assay enables the easy and fast monitoring of tumor biomarkers just according to "naked-eye" identification of band location in electrophoresis results, which are presented by an alternative visual probe of 2D MoS2 -protein conjugates. The developed visual immunoassay with the synergistic effect of gel electrophoresis techniques and 2D semiconductors pushes significant progress in "home-made" tests for disease early diagnosis.


Assuntos
Nanopartículas Metálicas/química , Semicondutores , Técnicas Biossensoriais/métodos , Eletroforese/métodos , Ouro/química , Imunoensaio/métodos , Molibdênio/química , Nanoestruturas/química
5.
Small ; 13(31)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28605120

RESUMO

Following research on two-dimensional (2D) transition metal dichalcogenides (TMDs), zero-dimensional (0D) TMDs nanostructures have also garnered some attention due to their unique properties; exploitable for new applications. The 0D TMDs nanostructures stand distinct from their larger 2D TMDs cousins in terms of their general structure and properties. 0D TMDs possess higher bandgaps, ultra-small sizes, high surface-to-volume ratios with more active edge sites per unit mass. So far, reported 0D TMDs can be mainly classified as quantum dots, nanodots, nanoparticles, and small nanoflakes. All exhibited diverse applications in various fields due to their unique and excellent properties. Of significance, through exploiting inherent characteristics of 0D TMDs materials, enhanced catalytic, biomedical, and photoluminescence applications can be realized through this exciting sub-class of TMDs. Herein, we comprehensively review the properties and synthesis methods of 0D TMDs nanostructures and focus on their potential applications in sensor, biomedicine, and energy fields. This article aims to educate potential adopters of these excitingly new nanomaterials as well as to inspire and promote the development of more impactful applications. Especially in this rapidly evolving field, this review may be a good resource of critical insights and in-depth comparisons between the 0D and 2D TMDs.


Assuntos
Fontes de Energia Bioelétrica , Tecnologia Biomédica , Técnicas Biossensoriais , Calcogênios/química , Metais/química , Elementos de Transição/química , Tecnologia Biomédica/instrumentação , Tecnologia Biomédica/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Química Verde/instrumentação , Humanos , Nanoestruturas/química , Pontos Quânticos/química
6.
Nat Commun ; 13(1): 7289, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435865

RESUMO

The transfer of the concept of chirality from molecules to synthesized nanomaterials has attracted attention amongst multidisciplinary teams. Here we demonstrate heterogeneous nucleation and anisotropic accumulation of Au nanoparticles on multilayer MoS2 planes to form chiroptically functional nanomaterials. Thiol amino acids with chiral conformations modulate asymmetric growth of gold nanoarchitectures on seeds of highly faceted Au/MoS2 heterostructures. Consequently, dendritic plasmonic nanocrystals with partial chiral morphologies are synthesized. The chirality of dendritic nanocrystals inherited from cysteine molecules refers to the structural characteristics and includes specific recognition of enantiomeric molecules. With integration of the intrinsic photothermal properties and inherited enantioselective characteristics, dendritic Au/MoS2 heterostructures exhibit chirality-dependent release of antimicrobial drugs from hydrogel substrates when activated by exogenous infrared irradiation. A three-in-one strategy involving synthesis of chiral dendritic heterostructures, enantioselective recognition, and controlled drug release system is presented, which improves nanomaterial synthetic technology and enhances our understanding of crucial chirality information.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Ouro/química , Estereoisomerismo , Nanopartículas Metálicas/química , Molibdênio , Anti-Infecciosos/farmacologia
7.
Nanoscale ; 12(22): 11979-11985, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32459251

RESUMO

Current defect theories significantly guide broad research progress, whereas the recognition of defect status remains challenging. Herein, MoS2 defect type, density and exposed state are visually identified with a reagent indicator of HAuCl4. Mo-terminated defects spontaneously reduce [AuCl4]- anions and oxidized Mo species are dissociated. Consequently, MoS2 edges guide the epitaxial branch of Au nanocrystals (NCs), followed by sequential growths at their planar defects. The size-evolution processes of LaMer growth and planar packages of the aggregative growth of Au/MoS2 nanoseeds result in the occupation of Au atomic layers on heterostructures. Consequently, shell-core hybrids are presented with localized surface plasmon resonance characteristics. The mechanism is systematically explored via the discriminated performance of plasmonic characteristics of Au nanostructures on semiconducting MoS2 substrates. With plasmonic identification, defect-associated size and interfacial diversities of MoS2 are visually information-rich. Tunable morphologies and synergistic optical characteristics of plasmonic semiconductor heterostructures inspire many more applications through the edge and planar defects intrinsic in layered MoS2.

8.
Nanoscale ; 6(16): 9831-8, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25027566

RESUMO

Electrochemically induced Fenton (electro-Fenton) reaction was used for efficient and controllable preparation of hydroxyl radicals, leading to the generation of luminescent quantum dots through etching of as-exfoliated MoS2 nanosheets. Morphologic changes of MoS2 nanosheets during the electro-Fenton reaction were monitored using transmission electron microscopy, showing that etching of MoS2 nanosheets induced by hydroxyl radicals resulted in rapid homogeneous fracturing of the sheets into small dots via a transition of nanoporous morphology. The as-generated dots with vertical dimensional thickness of ca. 0.7 nm and plane size of ca. 5 nm were demonstrated to be MoS2 quantum dots (MoS2-QDs), and their photoluminescence properties were explored based on quantum confinement, edge effect, and intrinsic characteristics. Moreover, the degree of etching and the concomitant porosity of MoS2 nanosheets could be conveniently tuned via the electro-Fenton reaction time, resulting in a new morphology of nanoporous MoS2 nanosheets, with potential new applications in various significant areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA