RESUMO
EphrinB2, a member of the Ephrin family, has been linked to several orthopaedic conditions. Nevertheless, the correlation between ephrinB2 and post-traumatic arthritis (PTOA) remains unclear. Human PTOA cartilage from human and mouse knee joints was systematically analysed to investigate the relationship between EphrinB2 and PTOA using SO-FG and toluidine blue staining, micro-CT, histomorphometry, immunohistochemistry, immunofluorescence, lentiviral articular injection and in situ end labeling (TUNEL) assays. EphrinB2 expression was significantly downregulated in PTOA chondrocytes. Blocking EphrinB2 increased the breakdown of cartilage matrix in mice with PTOA via reducing the process of chondrocyte autophagy. The presence of severe cartilage damage was evident, as indicated by a considerable decrease in both cartilage thickness and area, accompanied by an increase in chondrocyte death. Altogether, EphrinB2 is required for the maintenance of cartilage homeostasis in post-traumatic arthritis, and EphrinB2 ablation is associated with accelerated chondrocyte matrix degeneration, finally causing damage to the articular cartilage.
Assuntos
Autofagia , Cartilagem Articular , Condrócitos , Efrina-B2 , Homeostase , Condrócitos/metabolismo , Condrócitos/patologia , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Efrina-B2/metabolismo , Efrina-B2/genética , Humanos , Camundongos , Masculino , Camundongos Endogâmicos C57BL , FemininoRESUMO
PURPOSE: Previous studies have shown that DNA methyltransferase 3b (Dnmt3b) is the only Dnmt responsive to fracture repair and Dnmt3b ablation in Prx1-positive stem cells and chondrocyte cells both delayed fracture repair. Our study aims to explore the influence of Dnmt3b ablation in Gli1-positive stem cells in fracture healing mice and the underlying mechanism. METHODS: We generated Gli1-CreERT2; Dnmt3bflox/flox (Dnmt3bGli1ER) mice to operated tibia fracture. Fracture callus tissues of Dnmt3bGli1ER mice and control mice were collected and analyzed by X-ray, micro-CT, biomechanical testing, histopathology and TUNEL assay. RESULTS: The cartilaginous callus significantly decrease in ablation of Dnmt3b in Gli1-positive stem cells during fracture repair. The chondrogenic and osteogenic indicators (Sox9 and Runx2) in the fracture healing tissues in Dnmt3bGli1ER mice much less than control mice. Dnmt3bGli1ER mice led to delayed bone callus remodeling and decreased biomechanical properties of the newly formed bone during fracture repair. Both the expressions of Caspase-3 and Caspase-8 were upregulated in Dnmt3bGli1ER mice as well as the expressions of BCL-2. CONCLUSIONS: Our study provides an evidence that Dnmt3b ablation Gli1-positive stem cells can affect fracture healing and lead to poor fracture healing by regulating apoptosis to decrease chondrocyte hypertrophic maturation.
Assuntos
Calo Ósseo , Fraturas da Tíbia , Animais , Camundongos , Apoptose , Calo Ósseo/patologia , Consolidação da Fratura/fisiologia , Fraturas da Tíbia/cirurgia , Proteína GLI1 em Dedos de ZincoRESUMO
BACKGROUND: This study aimed to investigate the pathogenic factors of glucocorticoids (GCs)-induced osteonecrosis of the femoral head (GONFH) and its underlying pathogenesis in vivo and in vitro. METHODS: Radiographical (µCT) scanning, histopathological, immunohistochemical, reactive oxygen species (ROS) and tunel staining were conducted on GONFH patients and rats. ROS, tunel, flow cytometry, alkaline phosphatase, Oil red O staining, reverse transcriptionquantitative PCR and western blotting were applied to elucidate the exact pathogenesis mechanism. RESULTS: Clinical and animal studies demonstrated increased levels of ROS, aggravated oxidative stress (OS) microenvironment, augmented apoptosis and imbalance in osteogenic/lipogenic in the GONFH group compared to the control group. The fate of mesenchymal stem cells (MSCs) directed by GCs is a crucial factor in determining GONFH. In vitro studies further revealed that GCs promote excessive ROS production through the expression of NOX family proteins, leading to a deterioration of the OS microenvironment in MSCs, ultimately resulting in apoptosis and imbalance in osteogenic/lipogenic differentiation. Furthermore, our results confirmed that the NOX inhibitor-diphenyleneiodonium chloride and the NF-κB inhibitor-BAY 11-7082 ameliorated apoptosis and osteogenic/lipogenic differentiation imbalance of MSCs induced by an excess of GCs. CONCLUSION: We demonstrated for the first time that the aggravation of the OS microenvironment in MSCs caused by high doses of GCs leading to apoptosis and differentiation imbalance is a crucial factor in the pathogenesis of GONFH, mediated through activating the NOX/ROS/NF-κB signaling pathway.
Assuntos
Células-Tronco Mesenquimais , NF-kappa B , Humanos , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glucocorticoides/efeitos adversos , Glucocorticoides/metabolismo , Apoptose , Transdução de SinaisRESUMO
AIMS: To investigate the effects of Actein from Cimicifugae Rhizoma on condylar bone and cartilage in APOE deletion-induced osteoporotic mice, and to preliminarily explore the underlying mechanism. METHODS: Sixty 8-week-old female mice were used, which underwent APOE-/- and ovariectomy procedures, followed by oral administration of Actein (15â¯mg/kg) and Atorvastatin Calcium (AC, 3â¯mg/kg) for eight weeks. Body weight, uterine weight, and systemic indexes related to bone metabolism and lipid metabolism were assessed in each group. Changes in condylar bone histomorphometric parameters were evaluated using Micro-CT. Morphological changes in the condyle were observed with Hematoxylin-Eosin (H&E), Safranin O/Fast Green, and Alcian Blue Hematoxylin/Orange G (ABH/OG) staining, with OARSI pathology scoring performed. Sirius red staining and immunofluorescence were used to determine the expression levels of Collagen I (Col I) and Collagen III (Col III) in bone matrix, and Col II in cartilage matrix. Immunohistochemistry assessed the relative expression levels of ALP and proteins associated with the Wnt/ß-catenin/RUNX2 signaling pathway. RESULTS: APOE-/- exacerbates ovariectomy -induced osteoporosis (OP) in condylar of mice. Actein and AC significantly reversed OP, improved bone mineral density (BMD), increased bone microarchitecture, and restored abnormal calcium and phosphorus metabolism in the blood and urine. Morphologically, APOE-/- and ovariectomy reduced condylar cartilage thickness, disrupted chondrocyte arrangement, chondrocyte cleavage, and clustered aggregation, resembling osteoarthritis (OA)-like changes. Actein and AC partially restored the disrupted chondrocyte arrangement, smoothed chondrocyte cleavage, and up-regulated the levels of chondrocyte matrix (Col II, aggrecan) and bone matrix (Col III, ALP). Actein reversed the OA process, potentially through the Wnt/ß-catenin/RUNX2 signaling pathway. CONCLUSION: APOE-/- and ovariectomy induced OP, leading to OA-like lesions in condylar of mice. Actein promoted cartilage repair and trabecular bone recovery by increasing extracellular matrix synthesis (Col II, Col III, aggrecan), reversing the OA process, possibly through the Wnt/ß-catenin/RUNX2 signaling pathway.
RESUMO
The regulatory mechanisms involved in embryonic development are complex and yet remain unclear. SCP4 represents a novel nucleus-resident phosphatase identified in our previous study. The primary aim of this study was to elucidate the function of SCP4 in the progress of cartilage development and endochondral osteogenesis. SCP4-/- and SCP4Col2ER mice were constructed to assess differences in bone formation using whole skeleton staining. ABH/OG staining was used to compare chondrocyte differentiation and cartilage development. Relevant biological functions were analysed using RNA-sequencing and GO enrichment, further validated by immunohistochemical staining, Co-IP and Western Blot. Global SCP4 knockout led to abnormal embryonic development in SCP4-/- mice, along with delayed endochondral osteogenesis. In parallel, chondrocyte-specific removal of SCP4 yielded more severe embryonic deformities in SCP4Col2ER mice, including limb shortening, reduced chondrocyte number in the growth plate, disorganisation and cell enlargement. Moreover, RNA-sequencing analysis showed an association between SCP4 and chondrocyte apoptosis. Notably, Tunnel-positive cells were indeed increased in the growth plates of SCP4Col2ER mice. The deficiency of SCP4 up-regulated the expression levels of pro-apoptotic proteins both in vivo and in vitro. Additionally, phosphorylation of FoxO3a (pFoxO3a), a substrate of SCP4, was heightened in chondrocytes of SCP4Col2ER mice growth plate, and the direct interaction between SCP4 and pFoxO3a was further validated in chondrocytes. Our findings underscore the critical role of SCP4 in regulating cartilage development and endochondral osteogenesis during embryonic development partially via inhibition of chondrocytes apoptosis regulated by FoxO3a dephosphorylation.
Assuntos
Cartilagem , Condrócitos , Proteína Forkhead Box O3 , Camundongos Knockout , Osteogênese , Animais , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Fosforilação , Condrócitos/metabolismo , Condrócitos/citologia , Camundongos , Cartilagem/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/deficiência , Apoptose , Condrogênese , Diferenciação Celular , Camundongos Endogâmicos C57BL , Lâmina de Crescimento/metabolismoRESUMO
AIMS: The main pathological features of osteoarthritis (OA) include the degeneration of articular cartilage and a decrease in matrix synthesis. Chondrocytes, which contribute to matrix synthesis, play a crucial role in the development of OA. Liquiritin, an effective ingredient extracted from Glycyrrhiza uralensis Fisch., has been used for over 1000 years to treat OA. This study aims to investigate the impact of liquiritin on OA and its underlying mechanism. MATERIALS AND METHODS: Gait and hot plate tests assessed mouse behavior, while Micro-CT and ABH/OG staining observed joint morphological changes. The TUNEL kit detected chondrocyte apoptosis. Western blot and immunofluorescence techniques determined the expression levels of cartilage metabolism markers COL2 and MMP13, as well as apoptosis markers caspase3, bcl2, P53, and PUMA. KEGG analysis and molecular docking technology were used to verify the relationship between liquiritin and P53. KEY FINDINGS: Liquiritin alleviated pain sensitivity and improved gait impairment in OA mice. Additionally, we found that liquiritin could increase COL2 levels and decrease MMP13 levels both in vivo and in vitro. Importantly, liquiritin reduced chondrocyte apoptosis induced by OA, through decreased expression of caspase3 expression and increased expression of bcl2 expression. Molecular docking revealed a strong binding affinity between liquiritin and P53. Both in vivo and in vitro studies demonstrated that liquiritin suppressed the expression of P53 and PUMA in cartilage. SIGNIFICANCE: This indicated that liquiritin may alleviate OA progression by inhibiting the P53/PUMA signaling pathway, suggesting that liquiritin is a potential strategy for the treatment of OA.
Assuntos
Cartilagem Articular , Flavanonas , Glucosídeos , Osteoartrite , Animais , Camundongos , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Flavanonas/farmacologia , Glucosídeos/farmacologia , Metaloproteinase 13 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Osteoartrite/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismoRESUMO
Background: Intervertebral disc degeneration (IDD) is a major cause of lower back pain (LBP), in which inflammatory is frequently involved. Amygdalin (AMD) is a naturally occurring compound that exerts anti-fibrotic, anti-inflammatory, analgesic, and immunomodulatory effects in various diseases. The purpose of this study was to investigate the therapeutic effects and molecular mechanisms of AMD on Lumbar spine instability (LSI)-induced IDD in mice. Methods: In this study, we first explored the effects of AMD in vivo, and then further explored the mechanism of its effects both in vivo and in vitro. Ten-week-old male C57BL/6J mice were administrated with AMD. At 10 weeks after LSI, spinal were collected for tissue analyses, including histology, micro-CT, and immunohistochemistry for Col2, Mmp-13, TNF-α, and p-P65. Additionally, we also evaluated the mRNA and protein expression level of p-P65 and p-IKBα after being treated with AMD in vitro. Results: Histological staining, micro-CT and immunohistochemical analysis showed that AMD treatment significantly inhibited the expression of TNF-α and Mmp-13, increased the expression of Col2 as well as attenuated the calcification of cartilage endplates, eventually to delayed the progression of IDD. Meanwhile, in vivo and in vitro fluorescence imaging revealed that AMD markedly inhibited the AMD significantly inhibited the LSI-induced increase in TNF-α expression and P65and IKBα phosphorylation. Discussion: Our findings suggest that AMD partly inhibits the activation of NF-κB signaling pathway to reduce the release of inflammatory mediators and delay the degeneration of cartilage endplate in IDD model mice. Therefore, AMD may be a potential candidate for the treatment of IDD.
RESUMO
Background: Intervertebral disc degeneration (IDD) is a prevalent degenerative disease and often recognized as the primary cause of lower back pain (LBP). Aucubin (Au) is a natural compound with anti-inflammatory properties in various diseases. The present study aimed to confirm the therapeutic effect of Au on IDD and explore its potential mechanism in vivo and in vitro. Methods: The process of IDD was simulated using the lumbar spine instability (LSI) model. In vivo, the therapeutic effect of Au on LSI-induced mice was evaluated by micro-CT and histomorphometry. Additionally, immunohistochemistry was applied to detect the cartilage metabolism and inflammasome activation in endplate. In vitro, the cytotoxicity of Au on ATDC5 cells was detected by Cell Counting Kit-8 (CCK-8), and the biological effects of Au were evaluated by Quantitative Real-time PCR (qRT-PCR) and Western blotting. Results: Micro-CT analysis showed that Au administration significantly alleviated LSI-induced disc volume narrowing and endplate cartilage degeneration, which was further supported by Alcian Blue Hematoxylin/Orange G (ABH/OG) staining. Immunohistochemistry results verified that Au could increase the expression of Col2α1 and Aggrecan, reduce the expression of Mmp-13, and attenuate the degradation of the endplate extracellular matrix (ECM). Mechanistically, we found that Au treatment, both in vivo and in vitro, significantly inhibited NF-κB-NLRP3 inflammasome activation in chondrocytes as determined by the decreased expression of p-P65, NLRP3, and Caspase-1. Discussion: Taken together, our findings have demonstrated for the first time that Au treatment ameliorated the degeneration of cartilage endplates in IDD may by inhibiting NF-κB-NLRP3 inflammasome activation in chondrocytes and provided a potential candidate for the treatment of IDD.
RESUMO
This study aimed to examine the in vivo and in vitro therapeutic effects of glycyrrhizic acid (GA) on steroid-induced osteonecrosis of the femoral head (SONFH), which is caused by the overuse of glucocorticoids (GCs). Clinically, we identified elevated oxidative stress (OS) levels and an imbalance in osteolipogenic homeostasis in SONFH patients compared to femoral neck fracture (FNF) patients. In vivo, we established experimental SONFH in rats via lipopolysaccharides (LPSs) combined with methylprednisolone (MPS). We showed that GA and Wnt agonist-S8320 alleviated SONFH, as evidenced by the reduced microstructural and histopathological alterations in the subchondral bone of the femoral head and the decreased levels of OS in rat models. In vitro, GA reduced dexamethasone (Dex)-induced excessive NOX4 and OS levels by activating the Wnt/ß-catenin pathway, thereby promoting the osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibiting lipogenic differentiation. In addition, GA regulated the expression levels of the key transcription factors downstream of this pathway, Runx2 and PPARγ, thus maintaining osteolipogenic homeostasis. In summary, we demonstrated for the first time that GA modulates the osteolipogenic differentiation commitment of MSCs induced by excessive OS through activating the Wnt/ß-catenin pathway, thereby ameliorating SONFH.
Assuntos
Células-Tronco Mesenquimais , beta Catenina , Ratos , Animais , beta Catenina/metabolismo , Osteogênese , Ácido Glicirrízico/farmacologia , Diferenciação Celular , Via de Sinalização Wnt , Células-Tronco Mesenquimais/metabolismoRESUMO
TGF-ß signaling is crucial for modulating osteoarthritis (OA), and protein phosphatase magnesium-dependent 1A (PPM1A) has been reported as a phosphatase of SMAD2 and regulates TGF-ß signaling, while the role of PPM1A in cartilage homeostasis and OA development remains largely unexplored. In this study, we found increased PPM1A expression in OA chondrocytes and confirmed the interaction between PPM1A and phospho-SMAD2 (p-SMAD2). Importantly, our data show that PPM1A KO substantially protected mice treated with destabilization of medial meniscus (DMM) surgery against cartilage degeneration and subchondral sclerosis. Additionally, PPM1A ablation reduced the cartilage catabolism and cell apoptosis after the DMM operation. Moreover, p-SMAD2 expression in chondrocytes from KO mice was higher than that in WT controls with DMM induction. However, intraarticular injection with SD-208, repressing TGF-ß/SMAD2 signaling, dramatically abolished protective phenotypes in PPM1A-KO mice. Finally, a specific pharmacologic PPM1A inhibitor, Sanguinarine chloride (SC) or BC-21, was able to ameliorate OA severity in C57BL/6J mice. In summary, our study identified PPM1A as a pivotal regulator of cartilage homeostasis and demonstrated that PPM1A inhibition attenuates OA progression via regulating TGF-ß/SMAD2 signaling in chondrocytes and provided PPM1A as a potential target for OA treatment.
Assuntos
Condrócitos , Osteoartrite , Proteína Fosfatase 2C , Proteína Smad2 , Fator de Crescimento Transformador beta , Animais , Camundongos , Condrócitos/metabolismo , Camundongos Endogâmicos C57BL , Osteoartrite/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2C/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteína Smad2/metabolismoRESUMO
Background: Knee osteoarthritis (KOA) is the primary prevalent disabling joint disorder among osteoarthritis (OA), and there is no particularly effective treatment at the clinic. Traditional Chinese medicine (TCM) herbs, such as Eucommia ulmoides Oliv. and Glycyrrhiza uralensis Fisch. (E.G.) couplet medicines, have been reported to exhibit beneficial health effects on KOA, exact mechanism of E.G. nevertheless is not fully elucidated. Purpose: We assess the therapeutic effects of E.G. on KOA and explore its underlying molecular mechanism. Methods: UPLC-Q-TOF/MS technique was used to analyze the active chemical constituents of E.G. The destabilization of the medial meniscus model (DMM) was employed to evaluate the chondroprotective action of E.G. in KOA mice using histomorphometry, µCT, behavioral testing and immunohistochemical staining. Additionally, network pharmacology and molecular docking were used to predict potential targets for anti-KOA activities of E.G., which was further verified through in vitro experiments. Results: In vivo studies have shown that E.G. could significantly ameliorate DMM-induced KOA phenotypes including subchondral bone sclerosis, cartilage degradation, gait abnormality and thermal pain reaction sensibility. E.G. treatment could also promote extracellular matrix synthesis to protect articular chondrocytes, which was indicated by Col2 and Aggrecan expressions, as well as reducing matrix degradation by inhibiting MMP13 expression. Interestingly, network pharmacologic analysis showed that PPARG might be a therapeutic center. Further study proved that E.G.-containing serum (EGS) could up-regulate PPARG mRNA level in IL-1ß-induced chondrocytes. Notably, significant effects of EGS on the increment of anabolic gene expressions (Col2, Aggrecan) and the decrement of catabolic gene expressions (MMP13, Adamts5) in KOA chondrocytes were abolished due to the silence of PPARG. Conclusion: E.G. played a chondroprotective role in anti-KOA by inhibiting extracellular matrix degradation, which might be related to PPARG.
Assuntos
Eucommiaceae , Glycyrrhiza uralensis , Osteoartrite do Joelho , Animais , Camundongos , Metaloproteinase 13 da Matriz , Agrecanas , Simulação de Acoplamento Molecular , Farmacologia em Rede , PPAR gamaRESUMO
BACKGROUND: Osteoarthritis (OA) is the most prevalent form of degenerative whole-joint disease. Before the final option of knee replacement, arthroscopic surgery was the most widely used joint-preserving surgical treatment. Emerging regenerative therapies, such as those involving platelet-rich plasma, mesenchymal stem cells, and microfragmented adipose tissue (MFAT), have been pushed to the forefront of treatment to prevent the progression of OA. Currently, MFAT has been successfully applied to treat different types of orthopedic diseases. AIM: To assess the efficacy and safety of MFAT with arthroscopic surgery in patients with knee OA (KOA). METHODS: A randomized, multicenter study was conducted between June 2017 and November 2022 in 10 hospitals in Zhejiang, China. Overall, 302 patients diagnosed with KOA (Kellgren-Lawrence grades 2-3) were randomized to the MFAT group (n = 151, were administered MFAT following arthroscopic surgery), or the control group (n = 151, were administered hyaluronic acid following arthroscopic surgery). The study outcomes were changes in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, the visual analog scale (VAS) score, the Lequesne index score, the Whole-Organ Magnetic Resonance Imaging Score (WORMS), and safety over a 24-mo period from baseline. RESULTS: The changes in the WOMAC score (including the three subscale scores), VAS pain score, and Lequesne index score at the 24-mo mark were significantly different in the MFAT and control groups, as well as when comparing values at the posttreatment visit and those at baseline (P < 0.001). The MFAT group consistently demonstrated significant decreases in the WOMAC pain scores and VAS scores at all follow-ups compared to the control group (P < 0.05). Furthermore, the WOMAC stiffness score, WOMAC function score, and Lequesne index score differed significantly between the groups at 12 and 24 mo (P < 0.05). However, no signiï¬cant between-group differences were observed in the WORMS at 24 mo (P = 0.367). No serious adverse events occurred in both groups. CONCLUSION: The MFAT injection combined with arthroscopic surgery treatment group showed better mid-term clinical outcomes compared to the control group, suggesting its efficacy as a therapeutic approach for patients with KOA.