Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell ; 83(7): 1022-1023, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028412

RESUMO

In this issue, Ciesla et al.1 report a translation regulation through ALKBH5-mediated 5'-UTR m6A demethylation of the SF3B1 transcript during leukemic transformation. The SF3B1 protein maintains efficient splicing and expression of transcripts encoding DNA damage repair components to restrain excessive DNA damage.


Assuntos
Fosfoproteínas , Splicing de RNA , Fatores de Processamento de RNA/genética , Mutação , Fosfoproteínas/genética , Splicing de RNA/genética , Dano ao DNA/genética
2.
Mol Cell ; 83(15): 2692-2708.e7, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37478845

RESUMO

N6-methyladenosine (m6A) of mRNAs modulated by the METTL3-METTL14-WTAP-RBM15 methyltransferase complex and m6A demethylases such as FTO play important roles in regulating mRNA stability, splicing, and translation. Here, we demonstrate that FTO-IT1 long noncoding RNA (lncRNA) was upregulated and positively correlated with poor survival of patients with wild-type p53-expressing prostate cancer (PCa). m6A RIP-seq analysis revealed that FTO-IT1 knockout increased mRNA m6A methylation of a subset of p53 transcriptional target genes (e.g., FAS, TP53INP1, and SESN2) and induced PCa cell cycle arrest and apoptosis. We further showed that FTO-IT1 directly binds RBM15 and inhibits RBM15 binding, m6A methylation, and stability of p53 target mRNAs. Therapeutic depletion of FTO-IT1 restored mRNA m6A level and expression of p53 target genes and inhibited PCa growth in mice. Our study identifies FTO-IT1 lncRNA as a bona fide suppressor of the m6A methyltransferase complex and p53 tumor suppression signaling and nominates FTO-IT1 as a potential therapeutic target of cancer.


Assuntos
Neoplasias , RNA Longo não Codificante , Masculino , Camundongos , Animais , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53/genética , Adenosina/metabolismo , RNA Mensageiro/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
3.
Mol Cell ; 83(23): 4304-4317.e8, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37949069

RESUMO

RNA-binding proteins (RBPs) control messenger RNA fate in neurons. Here, we report a mechanism that the stimuli-induced neuronal translation is mediated by phosphorylation of a YTHDF1-binding protein FMRP. Mechanistically, YTHDF1 can condense with ribosomal proteins to promote the translation of its mRNA targets. FMRP regulates this process by sequestering YTHDF1 away from the ribosome; upon neuronal stimulation, FMRP becomes phosphorylated and releases YTHDF1 for translation upregulation. We show that a new small molecule inhibitor of YTHDF1 can reverse fragile X syndrome (FXS) developmental defects associated with FMRP deficiency in an organoid model. Our study thus reveals that FMRP and its phosphorylation are important regulators of activity-dependent translation during neuronal development and stimulation and identifies YTHDF1 as a potential therapeutic target for FXS in which developmental defects caused by FMRP depletion could be reversed through YTHDF1 inhibition.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Humanos , Fosforilação , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Trends Biochem Sci ; 49(7): 611-621, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677920

RESUMO

YTHDF proteins are main cytoplasmic 'reader' proteins of RNA N6-methyladenosine (m6A) methylation in mammals. They are largely responsible for m6A-mediated regulation in the cell cytosol by controlling both mRNA translation and degradation. Recent functional and mechanistic investigations of the YTHDF proteins revealed that these proteins have different functions to enable versatile regulation of the epitranscriptome. Their divergent functions largely originate from their different amino acid sequences in the low-complexity N termini. Consequently, they have different phase separation propensities and possess distinct post-translational modifications (PTMs). Different PTMs, subcellular localizations, and competition among partner proteins have emerged as three major mechanisms that control the functions of these YTHDF proteins. We also summarize recent progress on critical roles of these YTHDF proteins in anticancer immunity and the potential for targeting these proteins for developing new anticancer therapies.


Assuntos
Adenosina , Proteínas de Ligação a RNA , Humanos , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Adenosina/metabolismo , Adenosina/análogos & derivados , Processamento de Proteína Pós-Traducional , RNA/metabolismo , Metilação , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia
5.
Nat Methods ; 21(2): 247-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200227

RESUMO

RNA-binding proteins (RBPs) regulate diverse cellular processes by dynamically interacting with RNA targets. However, effective methods to capture both stable and transient interactions between RBPs and their RNA targets are still lacking, especially when the interaction is dynamic or samples are limited. Here we present an assay of reverse transcription-based RBP binding site sequencing (ARTR-seq), which relies on in situ reverse transcription of RBP-bound RNAs guided by antibodies to identify RBP binding sites. ARTR-seq avoids ultraviolet crosslinking and immunoprecipitation, allowing for efficient and specific identification of RBP binding sites from as few as 20 cells or a tissue section. Taking advantage of rapid formaldehyde fixation, ARTR-seq enables capturing the dynamic RNA binding by RBPs over a short period of time, as demonstrated by the profiling of dynamic RNA binding of G3BP1 during stress granule assembly on a timescale as short as 10 minutes.


Assuntos
RNA , Transcrição Reversa , RNA/genética , RNA/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação/genética , Ligação Proteica
6.
Nucleic Acids Res ; 52(8): 4257-4275, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366571

RESUMO

Complex biological processes are regulated by both genetic and epigenetic programs. One class of epigenetic modifications is methylation. Evolutionarily conserved methyl-CpG-binding domain (MBD)-containing proteins are known as readers of DNA methylation. MBD5 is linked to multiple human diseases but its mechanism of action remains unclear. Here we report that the zebrafish Mbd5 does not bind to methylated DNA; but rather, it directly binds to 5-methylcytosine (m5C)-modified mRNAs and regulates embryonic development, erythrocyte differentiation, iron metabolism, and behavior. We further show that Mbd5 facilitates removal of the monoubiquitin mark at histone H2A-K119 through an interaction with the Polycomb repressive deubiquitinase (PR-DUB) complex in vivo. The direct target genes of Mbd5 are enriched with both RNA m5C and H2A-K119 ubiquitylation signals. Together, we propose that zebrafish MBD5 is an RNA m5C reader that potentially links RNA methylation to histone modification and in turn transcription regulation in vivo.


Assuntos
5-Metilcitosina , Histonas , Ubiquitinação , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Histonas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , 5-Metilcitosina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Metilação de DNA , Desenvolvimento Embrionário/genética , Epigênese Genética
7.
Proc Natl Acad Sci U S A ; 119(42): e2123338119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36240321

RESUMO

5-methylcytosine (m5C) is one of the most prevalent modifications of RNA, playing important roles in RNA metabolism, nuclear export, and translation. However, the potential role of RNA m5C methylation in innate immunity remains elusive. Here, we show that depletion of NSUN2, an m5C methyltransferase, significantly inhibits the replication and gene expression of a wide range of RNA and DNA viruses. Notably, we found that this antiviral effect is largely driven by an enhanced type I interferon (IFN) response. The antiviral signaling pathway is dependent on the cytosolic RNA sensor RIG-I but not MDA5. Transcriptome-wide mapping of m5C following NSUN2 depletion in human A549 cells revealed a marked reduction in the m5C methylation of several abundant noncoding RNAs (ncRNAs). However, m5C methylation of viral RNA was not noticeably altered by NSUN2 depletion. In NSUN2-depleted cells, the host RNA polymerase (Pol) III transcribed ncRNAs, in particular RPPH1 and 7SL RNAs, were substantially up-regulated, leading to an increase of unshielded 7SL RNA in cytoplasm, which served as a direct ligand for the RIG-I-mediated IFN response. In NSUN2-depleted cells, inhibition of Pol III transcription or silencing of RPPH1 and 7SL RNA dampened IFN signaling, partially rescuing viral replication and gene expression. Finally, depletion of NSUN2 in an ex vivo human lung model and a mouse model inhibits viral replication and reduces pathogenesis, which is accompanied by enhanced type I IFN responses. Collectively, our data demonstrate that RNA m5C methylation controls antiviral innate immunity through modulating the m5C methylome of ncRNAs and their expression.


Assuntos
Interferon Tipo I , Viroses , 5-Metilcitosina/metabolismo , Animais , Antivirais , Proteína DEAD-box 58/metabolismo , Humanos , Imunidade Inata/genética , Interferon Tipo I/genética , Interferons , Ligantes , Camundongos , RNA Polimerase III , Replicação Viral/genética
8.
PLoS Biol ; 18(4): e3000664, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32267835

RESUMO

The N6-methyladenosine (m6A) modification regulates mRNA stability and translation. Here, we show that transcriptomic m6A modification can be dynamic and the m6A reader protein YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) promotes mRNA decay during cell cycle. Depletion of YTHDF2 in HeLa cells leads to the delay of mitotic entry due to overaccumulation of negative regulators of cell cycle such as Wee1-like protein kinase (WEE1). We demonstrate that WEE1 transcripts contain m6A modification, which promotes their decay through YTHDF2. Moreover, we found that YTHDF2 protein stability is dependent on cyclin-dependent kinase 1 (CDK1) activity. Thus, CDK1, YTHDF2, and WEE1 form a feedforward regulatory loop to promote mitotic entry. We further identified Cullin 1 (CUL1), Cullin 4A (CUL4A), damaged DNA-binding protein 1 (DDB1), and S-phase kinase-associated protein 2 (SKP2) as components of E3 ubiquitin ligase complexes that mediate YTHDF2 proteolysis. Our study provides insights into how cell cycle mediators modulate transcriptomic m6A modification, which in turn regulates the cell cycle.


Assuntos
Adenosina/análogos & derivados , Ciclo Celular/fisiologia , Mitose/fisiologia , Proteínas de Ligação a RNA/metabolismo , Adenosina/genética , Adenosina/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Estabilidade Proteica , Proteínas Tirosina Quinases/genética , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas Quinases Associadas a Fase S/metabolismo
9.
Angew Chem Int Ed Engl ; 62(51): e202311924, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37909922

RESUMO

5-Methylcytosine (m5 C) is an RNA modification prevalent on tRNAs, where it can protect tRNAs from endonucleolytic cleavage to maintain protein synthesis. The NSUN family (NSUN1-7 in humans) of RNA methyltransferases are capable of installing the methyl group onto the C5 position of cytosines in RNA. NSUNs are implicated in a wide range of (patho)physiological processes, but selective and cell-active inhibitors of these enzymes are lacking. Here, we use cysteine-directed activity-based protein profiling (ABPP) to discover azetidine acrylamides that act as stereoselective covalent inhibitors of human NSUN2. Despite targeting a conserved catalytic cysteine in the NSUN family, the NSUN2 inhibitors show negligible cross-reactivity with other human NSUNs and exhibit good proteome-wide selectivity. We verify that the azetidine acrylamides inhibit the catalytic activity of recombinant NSUN2, but not NSUN6, and demonstrate that these compounds stereoselectively disrupt NSUN2-tRNA interactions in cancer cells, leading to a global reduction in tRNA m5 C content. Our findings thus highlight the potential to create isotype-selective and cell-active inhibitors of NSUN2 with covalent chemistry targeting a conserved catalytic cysteine.


Assuntos
Azetidinas , Inibidores Enzimáticos , Metiltransferases , tRNA Metiltransferases , Humanos , Acrilamidas , Cisteína/metabolismo , Metilação , Metiltransferases/antagonistas & inibidores , Proteômica , RNA de Transferência/química , tRNA Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia
10.
Nat Chem Biol ; 15(11): 1110-1119, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591565

RESUMO

RNA molecules are highly compartmentalized in eukaryotic cells, with their localizations intimately linked to their functions. Despite the importance of RNA targeting, our current knowledge of the spatial organization of the transcriptome has been limited by a lack of analytical tools. In this study, we develop a chemical biology approach to label RNAs in live cells with high spatial specificity. Our method, called CAP-seq, capitalizes on light-activated, proximity-dependent photo-oxidation of RNA nucleobases, which could be subsequently enriched via affinity purification and identified by high-throughput sequencing. Using this technique, we investigate the local transcriptomes that are proximal to various subcellular compartments, including the endoplasmic reticulum and mitochondria. We discover that messenger RNAs encoding for ribosomal proteins and oxidative phosphorylation pathway proteins are highly enriched at the outer mitochondrial membrane. Due to its specificity and ease of use, CAP-seq is a generally applicable technique to investigate the spatial transcriptome in many biological systems.


Assuntos
Luz , RNA/efeitos da radiação , Transcriptoma , Humanos , RNA/genética
11.
Exp Mol Pathol ; 115: 104438, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32277959

RESUMO

BACKGROUND: Acute liver injury (ALI) is associated with the oxidative stress and apoptosis in liver. Recent studies have shown that miR-195, a critical member of miR-15 family, has modulated the apoptosis in various organic diseases. However, it is elusive whether miR-195 regulation exert a hepatic ameliorative effect on ALI by the suppression of apoptosis and oxidative stress levels. We aimed to explore the regulated role of miR-195 in acute liver injury via the current study. METHODS: C57BL/6 J mice (male, seven-week, 18-20 g) were administrated intraperitoneal injection with tetrachloromethane (CCl4) to induce ALI. miR-195 inhibitor or mimics loaded in lentivirus vectors (miR-195 INH or MMC) and Pim-1 loaded in Adeno-associated viral vectors (AAV-Pim-1) were respectively delivered into mouse tail intravenous to establish silence or overexpression of miR-195 and overexpression of Pim-1. Western blotting, Reverse Transcription-Polymerase Chain Reaction (RT-PCR), enzyme linked immunosorbent assay (ELISA) technique, Immunohistochemistry (IHC) and Hematoxylin-eosin (H&E) staining were conducted to measure miR-195 and Pim-1 expression, apoptosis and oxidative stress levels, histological and functional change. RESULTS: We found that the expression of miR-195 markedly increased in CCl4-induced ALI. Besides, we demonstrated that the silence of miR-195 attenuated the apoptosis and oxidative stress via up-regulating Pim-1 in CCl4-induced ALI. Moreover, the inhibition of miR-195 protected the integrity and function of liver tissue. CONCLUSIONS: The above results showed that the suppression of miR-195 ameliorated ALI through inhibiting apoptosis and oxidative stress via targeting Pim-1. Our research provided a novel scheme that the miR-195 modulation in process of ALI may be an effective therapy method and verifies a promising target for diagnostic and therapeutic strategy of miRNAs.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Apoptose , MicroRNAs/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Apoptose/genética , Sequência de Bases , Tetracloreto de Carbono , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Estresse Oxidativo/genética , Recuperação de Função Fisiológica
12.
Fundam Res ; 3(5): 760-762, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38933289

RESUMO

Genetic information flows from DNA to protein through RNA in the central dogma. Different RNA species are known to accomplish essential tasks of protein encoding (mRNAs), amino acid loading (tRNAs), and translation machinery assembly (rRNAs). However, on top of these well-known roles, RNAs are central to various cellular regulatory pathways. Here we summarize newly emerging regulatory functions of RNA, specifically focusing on regulations through RNA modifications, RNP granules, and chromatin-associated regulatory RNA. In addition to being an essential building block of the central dogma, RNA can be critical to the regulation of many cellular processes.

13.
Genome Biol ; 24(1): 17, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694229

RESUMO

The YTH N6-methyladenosine RNA binding proteins (YTHDFs) mediate the functional effects of N6-methyladenosine (m6A) on RNA. Recently, a report proposed that all YTHDFs work redundantly to facilitate RNA decay, raising questions about the exact functions of individual YTHDFs, especially YTHDF1 and YTHDF2. We show that YTHDF1 and YTHDF2 differ in their low-complexity domains (LCDs) and exhibit different behaviors in condensate formation and subsequent physiological functions. Biologically, we also find that the global stabilization of RNA after depletion of all YTHDFs is driven by increased P-body formation and is not strictly m6A dependent.


Assuntos
Proteínas de Ligação a RNA , RNA , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Humanos
14.
Nat Cell Biol ; 25(11): 1676-1690, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945829

RESUMO

N6-methyladenosine (m6A) is the most abundant internal mRNA nucleotide modification in mammals, regulating critical aspects of cell physiology and differentiation. The YTHDF proteins are the primary readers of m6A modifications and exert physiological functions of m6A in the cytosol. Elucidating the regulatory mechanisms of YTHDF proteins is critical to understanding m6A biology. Here we report a mechanism that protein post-translational modifications control the biological functions of the YTHDF proteins. We find that YTHDF1 and YTHDF3, but not YTHDF2, carry high levels of nutrient-sensing O-GlcNAc modifications. O-GlcNAcylation attenuates the translation-promoting function of YTHDF1 and YTHDF3 by blocking their interactions with proteins associated with mRNA translation. We further demonstrate that O-GlcNAc modifications on YTHDF1 and YTHDF3 regulate the assembly, stability and disassembly of stress granules to enable better recovery from stress. Therefore, our results discover an important regulatory pathway of YTHDF functions, adding an additional layer of complexity to the post-transcriptional regulation function of mRNA m6A.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Animais , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Mamíferos/metabolismo
15.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577492

RESUMO

N 6 -methyladenosine (m 6 A) is the most abundant chemical modification in mRNA, and plays important roles in human and mouse embryonic stem cell pluripotency, maintenance, and differentiation. We have recently reported, for the first time, the role of m 6 A in the postnatal control of ß-cell function in physiological states and in Type 1 and 2 Diabetes. However, the precise mechanisms by which m 6 A acts to regulate the development of human and mouse ß-cells are unexplored. Here, we show that the m 6 A landscape is dynamic during human pancreas development, and that METTL14, one of the m 6 A writer complex proteins, is essential for the early differentiation of both human and mouse ß-cells.

16.
Science ; 379(6633): 677-682, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36705538

RESUMO

N6-methyladenosine (m6A) is the most abundant messenger RNA (mRNA) modification and plays crucial roles in diverse physiological processes. Using a massively parallel assay for m6A (MPm6A), we discover that m6A specificity is globally regulated by suppressors that prevent m6A deposition in unmethylated transcriptome regions. We identify exon junction complexes (EJCs) as m6A suppressors that protect exon junction-proximal RNA within coding sequences from methylation and regulate mRNA stability through m6A suppression. EJC suppression of m6A underlies multiple global characteristics of mRNA m6A specificity, with the local range of EJC protection sufficient to suppress m6A deposition in average-length internal exons but not in long internal and terminal exons. EJC-suppressed methylation sites colocalize with EJC-suppressed splice sites, which suggests that exon architecture broadly determines local mRNA accessibility to regulatory complexes.


Assuntos
Éxons , Regulação da Expressão Gênica , Splicing de RNA , RNA Mensageiro , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Humanos , Animais
17.
Cell Chem Biol ; 29(7): 1218-1231.e8, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35245437

RESUMO

The spatial arrangement of newly synthesized transcriptome in eukaryotic cells underlies various biological processes including cell proliferation and differentiation. In this study, we combine metabolic incorporation of electron-rich ribonucleosides (e.g., 6-thioguanosine and 4-thiouridine) with a peroxidase-mediated proximity-dependent RNA labeling technique (APEX-seq) to develop a sensitive method, termed MERR APEX-seq, for selectively profiling newly transcribed RNAs at specific subcellular locations in live cells. We demonstrate that MERR APEX-seq is 20-fold more efficient than APEX-seq and offers both high spatial specificity and high coverage in mitochondrial matrix. At the ER membrane, 91% of the transcripts captured by MERR APEX-seq encode for secretory pathway proteins, thus demonstrating the high spatial specificity of MERR APEX-seq in open subcellular compartments. Application of MERR APEX-seq to the nuclear lamina of human cells reveals a local transcriptome of 1,012 RNAs, many of which encode for nuclear proteins involved in histone modification, chromosomal structure maintenance, and RNA processing.


Assuntos
Ribonucleosídeos , Transcriptoma , Elétrons , Perfilação da Expressão Gênica/métodos , Humanos , Mitocôndrias/metabolismo , RNA/metabolismo
18.
Science ; 376(6596): 968-973, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35511947

RESUMO

N6-methyladenosine (m6A) is the most abundant internal modification on mammalian messenger RNA. It is installed by a writer complex and can be reversed by erasers such as the fat mass and obesity-associated protein FTO. Despite extensive research, the primary physiological substrates of FTO in mammalian tissues and development remain elusive. Here, we show that FTO mediates m6A demethylation of long-interspersed element-1 (LINE1) RNA in mouse embryonic stem cells (mESCs), regulating LINE1 RNA abundance and the local chromatin state, which in turn modulates the transcription of LINE1-containing genes. FTO-mediated LINE1 RNA m6A demethylation also plays regulatory roles in shaping chromatin state and gene expression during mouse oocyte and embryonic development. Our results suggest broad effects of LINE1 RNA m6A demethylation by FTO in mammals.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Elementos Nucleotídeos Longos e Dispersos , Células-Tronco Embrionárias Murinas , Oócitos , RNA Mensageiro , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Cromatina/metabolismo , Desmetilação , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Oócitos/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Nat Commun ; 12(1): 177, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420027

RESUMO

Glioblastoma (GBM) is the most common type of adult malignant brain tumor, but its molecular mechanisms are not well understood. In addition, the knowledge of the disease-associated expression and function of YTHDF2 remains very limited. Here, we show that YTHDF2 overexpression clinically correlates with poor glioma patient prognosis. EGFR that is constitutively activated in the majority of GBM causes YTHDF2 overexpression through the EGFR/SRC/ERK pathway. EGFR/SRC/ERK signaling phosphorylates YTHDF2 serine39 and threonine381, thereby stabilizes YTHDF2 protein. YTHDF2 is required for GBM cell proliferation, invasion, and tumorigenesis. YTHDF2 facilitates m6A-dependent mRNA decay of LXRA and HIVEP2, which impacts the glioma patient survival. YTHDF2 promotes tumorigenesis of GBM cells, largely through the downregulation of LXRα and HIVEP2. Furthermore, YTHDF2 inhibits LXRα-dependent cholesterol homeostasis in GBM cells. Together, our findings extend the landscape of EGFR downstream circuit, uncover the function of YTHDF2 in GBM tumorigenesis, and highlight an essential role of RNA m6A methylation in cholesterol homeostasis.


Assuntos
Neoplasias Encefálicas/metabolismo , Colesterol/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adulto , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/metabolismo , Receptores ErbB/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioma , Humanos , Receptores X do Fígado/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Fosforilação , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcriptoma
20.
Nat Genet ; 52(9): 939-949, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32601472

RESUMO

N6-methyladenosine (m6A) plays important roles in regulating messenger RNA processing. Despite rapid progress in this field, little is known about the genetic determinants of m6A modification and their role in common diseases. In this study, we mapped the quantitative trait loci (QTLs) of m6A peaks in 60 Yoruba (YRI) lymphoblastoid cell lines. We found that m6A QTLs are largely independent of expression and splicing QTLs and are enriched with binding sites of RNA-binding proteins, RNA structure-changing variants and transcriptional features. Joint analysis of the QTLs of m6A and related molecular traits suggests that the downstream effects of m6A are heterogeneous and context dependent. We identified proteins that mediate m6A effects on translation. Through integration with data from genome-wide association studies, we show that m6A QTLs contribute to the heritability of various immune and blood-related traits at levels comparable to splicing QTLs and roughly half of expression QTLs. By leveraging m6A QTLs in a transcriptome-wide association study framework, we identified putative risk genes of these traits.


Assuntos
Adenosina/análogos & derivados , RNA Mensageiro/genética , Adenosina/genética , Mapeamento Cromossômico/métodos , Testes Genéticos/métodos , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Fenótipo , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Splicing de RNA/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA