Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982682

RESUMO

Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technology that has evolved into an indispensable approach for analyzing the function of genes. It downregulates endogenous genes by utilizing the posttranscriptional gene silencing (PTGS) machinery of plants to prevent systemic viral infections. Based on recent advances, VIGS can now be used as a high-throughput tool that induces heritable epigenetic modifications in plants through the viral genome by transiently knocking down targeted gene expression. As a result of the progression of DNA methylation induced by VIGS, new stable genotypes with desired traits are being developed in plants. In plants, RNA-directed DNA methylation (RdDM) is a mechanism where epigenetic modifiers are guided to target loci by small RNAs, which play a major role in the silencing of the target gene. In this review, we described the molecular mechanisms of DNA and RNA-based viral vectors and the knowledge obtained through altering the genes in the studied plants that are not usually accessible to transgenic techniques. We showed how VIGS-induced gene silencing can be used to characterize transgenerational gene function(s) and altered epigenetic marks, which can improve future plant breeding programs.


Assuntos
Inativação Gênica , Vírus de Plantas , Melhoramento Vegetal , Epigênese Genética , Interferência de RNA , Plantas/genética , Vetores Genéticos , RNA , Vírus de Plantas/genética , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430495

RESUMO

Cyclins are involved in cell division and proliferation by activating enzymes required for the cell cycle progression. Our genome-wide analysis identified 76 cyclin genes in Brassica rapa, which were divided into nine different types (A-, B-, C-, D-, H-, L-, P-, T-, and SDS-type). Cyclin genes were unevenly scattered on all chromosomes, with a maximum of 10 on A08 and a minimum of 2 on A04. The gene structure and conserved motif analysis showed that the cyclins which belonged to the same type or subgroup have a comparable intron/exon pattern or motif. A total of 14 collinear gene pairs suggested that the B. rapa cyclin genes experienced a mass of segmental duplication. The Ka/Ks analysis revealed that the Brcyclin gene family has undergone an extensive purifying pressure. By analyzing the cis-elements in the promoters, we identified 11 cis-elements and five of them are related to the hormone response. We observed 48 potential miRNAs targeting 44 Brcyclin genes, which highlighted the involvement of miRNAs in the regulation of cyclin genes. An association analysis between the leaf size and SNPs in mutants and a transcriptome analysis of two Chinese cabbage-cabbage translocation lines also showed that the Brcyclin gene family was involved in the development of the leaves. The functional characterization of the B. rapa cyclin gene family will provide the foundation for future physiological and genetic studies in the regulation of leaf growth.


Assuntos
Brassica rapa , MicroRNAs , Brassica rapa/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Transcriptoma , Mapeamento Cromossômico , Filogenia , Perfilação da Expressão Gênica , MicroRNAs/metabolismo
3.
J Adv Res ; 53: 49-59, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36581197

RESUMO

BACKGROUND: Heading is an important agronomic feature for Chinese cabbage, cabbage, and lettuce. The heading leaves function as nutrition storage organs, which contribute to the high quality and economic worth of leafy heads. Leaf development is crucial during the heading stage, most genes previously predicted to be involved in the heading process are based on Arabidopsis leaf development studies. AIM OF REVIEW: Till date, there is no published review article that demonstrated a complete layout of all the identified regulators of leaf curvature and heading. In this review, we have summarized all the identified physiological and genetic regulators that are directly or indirectly involved in leaf curvature and heading in Brassica crops. By integrating all identified regulators that provide a coherent logic of leaf incurvature and heading, we proposed a molecular mechanism in Brassica crops with graphical illustrations. This review adds value to future breeding of distinct heading kinds of cabbage and Chinese cabbage by providing unique insights into leaf development. KEY SCIENTIFIC CONCEPTS OF REVIEW: Leaf curvature and heading are established by synergistic interactions among genes, transcription factors, microRNAs, phytohormones, and environmental stimuli that regulate primary and secondary morphogenesis. Various genes have been identified using transformation and genome editing that are responsible for the formation of leaf curvature and heading in Brassica crops. A range of leaf morphologies have been observed in Brassica, which are established because of the mutated determinants that are responsible for cell division and leaf polarity.


Assuntos
Arabidopsis , Brassica rapa , Brassica , Brassica rapa/genética , Proteínas de Plantas/genética , Melhoramento Vegetal , Brassica/genética , Folhas de Planta/genética
4.
Front Plant Sci ; 14: 987514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063216

RESUMO

Changing climatic conditions are an increasing threat to cotton production worldwide. There is a need to develop multiple stress-tolerant cotton germplasms that can adapt to a wide range of environments. For this purpose, 30 cotton genotypes were evaluated for two years under drought (D), heat (H), and drought + heat stresses (DH) under field conditions. Results indicated that plant height, number of bolls, boll weight, seed cotton yield, fiber fineness, fiber strength, fiber length, K+, K+/Na+, relative water contents (RWC), chlorophyll a and b, carotenoids, and total soluble proteins got reduced under D and H and were lowest under DH, whereas superoxidase dismutase (SOD), H2O2, Na+, GOT%, total phenolic contents, ascorbate, and flavonoids got increased for consecutive years. Correlation studies indicated that there was a positive correlation between most of the traits, but a negative correlation with H2O2 and Na+ ions. PCA and clustering analysis indicated that MNH-786, KAHKSHAN, CEMB-33, MS-71, FH-142, NIAB-820, CRS-2007, and FH-312 consistently performed better than other genotypes for most traits under stress conditions. Identified genotypes can be utilized in the future cotton breeding program to develop high-yielding, climate change-resilient cotton.

5.
Cells ; 11(15)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954158

RESUMO

Heat shock proteins protect plants from abiotic stress, such as salt, drought, heat, and cold stress. HSP70 is one of the major members of the heat shock protein family. To explore the mechanism of HSP70 in Brassica rapa, we identified 28 putative HSP70 gene family members using state-of-the-art bioinformatics-based tools and methods. Based on chromosomal mapping, HSP70 genes were the most differentially distributed on chromosome A03 and the least distributed on chromosome A05. Ka/Ks analysis revealed that B. rapa evolution was subjected to intense purifying selection of the HSP70 gene family. RNA-sequencing data and expression profiling showed that heat and cold stress induced HSP70 genes. The qRT-PCR results verified that the HSP70 genes in Chinese cabbage (Brassica rapa ssp. pekinensis) are stress-inducible under both cold and heat stress. The upregulated expression pattern of these genes indicated the potential of HSP70 to mitigate environmental stress. These findings further explain the molecular mechanism underlying the responses of HSP70 to heat and cold stress.


Assuntos
Brassica rapa , Brassica rapa/genética , Brassica rapa/metabolismo , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Rev. bras. entomol ; 64(1): e201998, 2020. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1057800

RESUMO

Abstract Synthetic wood preservatives are the causes of large-scale environmental pollution and few have been withdrawn from the commercial markets in the past years. The present studies focused on determination of naturally present extractives of Ziziphus mauritiana as less toxic wood protectant against subterranean termites. Firstly, natural resistance of Z. mauritiana heartwood against termite was determined by exposing stakes in the field. For the preparation of extractives, air-dried Z. mauritiana heartwood and bark shavings were soaked in 1 liter each of ethyl acetate, hexane, petroleum ether and water in a bottle separately. Different dipping treatment times (36 and 72 hours) at 10, 20 and 30% concentrations of extractives on Populus deltoides wooden stakes were used and stakes were exposed to termites in submerged manner. Combination of extractives in different solvents were included as separate experiment and finally, seasoning prior to extractives application on P. deltoides wooden stakes was also done and stakes were arranged in three replications for each treatment. Maximum mean percent weight loss (81.1%) was observed in case of P. deltoides followed by boiled Z. mauritiana (15.24%) in termite resistance test. Stakes treated with petroleum ether extracts had minimum weight loss alone or in combination with other extract's solvent in all experiments. Extractives in other solvents followed petroleum ether non-significantly but were significantly different from their respective control treatment, which had the highest weight loss (>60%). Transferring durability using extracts of Z. mauritiana increased resistance of non-durable P. deltoides against termites and extractives could be used as wood preservatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA