Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phys Chem Chem Phys ; 25(3): 2486-2497, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36602075

RESUMO

In this work, we present a Deuteron Nuclear Magnetic Resonance (DNMR) study of the non-symmetric odd liquid crystal dimer α-(4-cyanobiphenyl-4'-yloxy)-ω-(1-pyrenimine-benzylidene-4'-oxy) heptane (CBO7O.Py), formed by a pro-mesogenic cyanobiphenyl unit and a bulky pyrene-containing unit, linked via alkoxy flexible chain. We have synthesized two partially deuterated samples: one with the deuterium atoms in the cyanobiphenyl moiety (dCBO7O.Py) and the other one with the deuterium atoms in the pyrenimine-benzylidene unit (CBO7O.dPy). We have performed angular distribution analysis in the SmA glassy state, obtaining the degree of order of both rigid cores and an estimation of the internal molecular angle between both structures. With the results from the angular study, we have been able to determine the degree of order of both rigid units in either the N phase and the SmA phase, far enough from the glass transition. Both rigid cores have the same degree of order close to the nematic-isotropic phase transition, but as the compound is cooled down, the degree of order of the cyanobiphenyl moiety is clearly higher than that of the pyrene-containing unit. The critical behaviour of the order parameter of the pyrene-containing moiety is consistent with the fact that, for CBO7O.Py, the N-I phase transition is tricritical, which seems to indicate that the uniaxial order parameter of the dimer is dominated by the degree of order of the pyrene-containing core.

2.
Phys Chem Chem Phys ; 22(40): 23064-23072, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33047744

RESUMO

Polymer-dispersed liquid crystal elastomers have been recently introduced as a thermomechanically active composite material, consisting of magnetically oriented liquid crystal elastomer particles incorporated in a cured polymer matrix. Their thermomechanical properties are largely governed by the degree of imprinted particle alignment, which can be assessed by means of deuterium perturbed 2H-NMR. Spectra of samples with various degrees of imprinted particle alignment were recorded and the results simulated using the discrete reorientational exchange model developed for determining the dispersion of liquid crystal elastomer's domain orientational distribution. We show that the model can be applied to measure the orientational distribution of embedded liquid crystal microparticles and successfully determine the orientational order parameter in the composite system. Thermomechanical measurements correlate well with the obtained results, thus additionally confirming the validity of the applied method.

3.
Soft Matter ; 14(35): 7277-7286, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30140799

RESUMO

Uniaxial order parameters of the nematic and columnar mesophases in the lyotropic chromonic liquid crystal Sunset Yellow FCF have been determined from deuteron nuclear magnetic resonance, where random confinement of the system by the dispersion of aerosil nanoparticles has been performed to help obtain the angular dependent spectra. The long-time evolution study of the order parameters shows that the system requires tens of hours to stabilize after a deep change in temperature, in contrast with the very fast assembly process of the aggregates. Finally, the degree of order of the water molecules, forced by the uniaxial environment, has been determined.

4.
J Biol Chem ; 291(42): 21857-21868, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27535221

RESUMO

The cellular form of the prion protein (PrPC) is a highly conserved glycoprotein mostly expressed in the central and peripheral nervous systems by different cell types in mammals. A misfolded, pathogenic isoform, denoted as prion, is related to a class of neurodegenerative diseases known as transmissible spongiform encephalopathy. PrPC function has not been unequivocally clarified, and it is rather defined as a pleiotropic protein likely acting as a dynamic cell surface scaffolding protein for the assembly of different signaling modules. Among the variety of PrPC protein interactors, the neuronal cell adhesion molecule (NCAM) has been studied in vivo, but the structural basis of this functional interaction is still a matter of debate. Here we focused on the structural determinants responsible for human PrPC (HuPrP) and NCAM interaction using stimulated emission depletion (STED) nanoscopy, SPR, and NMR spectroscopy approaches. PrPC co-localizes with NCAM in mouse hippocampal neurons, and this interaction is mainly mediated by the intrinsically disordered PrPC N-terminal tail, which binds with high affinity to the NCAM fibronectin type-3 domain. NMR structural investigations revealed surface-interacting epitopes governing the interaction between HuPrP N terminus and the second module of the NCAM fibronectin type-3 domain. Our data provided molecular details about the interaction between HuPrP and the NCAM fibronectin domain, and revealed a new role of PrPC N terminus as a dynamic and functional element responsible for protein-protein interaction.


Assuntos
Hipocampo/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Proteínas PrPC/metabolismo , Animais , Hipocampo/química , Humanos , Camundongos , Moléculas de Adesão de Célula Nervosa/química , Ressonância Magnética Nuclear Biomolecular , Proteínas PrPC/química , Domínios Proteicos
5.
Biochem Biophys Res Commun ; 484(1): 45-50, 2017 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-28109886

RESUMO

In the brain of patients with transmissible spongiform encephalopathies, besides PrPSc aggregates, deposition of truncated PrP molecules was described. Jansen et al. reported two clinical cases with deposition of C-terminally truncated PrP, one of them ending with Tyr226. We have previously described the discovery of monoclonal antibody V5B2 that selectively recognizes this version of the prion protein, which we called PrP226*. Using monoclonal antibody V5B2 we showed that accumulation of PrP226* is characteristic for most types of human and animal TSEs. Its distribution correlates to the distribution of PrPSc aggregates. To gain insight into the structural basis of its presence and distribution in PrP aggregates, we have determined the NMR structure of recombinant PrP226*. The structure of the protein consists of a disordered N-terminal part (residues 90-125) and a structured C-terminal part (residues 126-226). The C-terminal segment consists of four α-helices and a short antiparallel ß-sheet. Our model predicts a break in the C-terminal helix and reorganized hydrophobic interactions between helix α3 and ß2-α2 loop due to the shorter C-terminus. The structural model gives information on the possible role of the protein in the development of amyloid disease and can serve as a foundation to develop tools for prevention and treatment of prion diseases.


Assuntos
Amiloidose/metabolismo , Proteínas Priônicas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular , Proteínas Priônicas/química
6.
Magn Reson Chem ; 52(10): 649-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24919664

RESUMO

This is a brief overview on recent studies on liquid crystalline elastomers (LCEs) based on polysiloxane chain, in the form of monodomain films, selectively (2)H-labeled in different parts of the LCE samples, i.e. on the crosslinker or mesogenic units. (2)H NMR spectroscopic techniques were used to measure the temperature dependence of the quadrupolar splittings, line widths and relaxation times, T(1) and T(2). From these data, several information about the orientational order parameter, S, of various LCE fragments, thermodynamic features of the isotropic-nematic transition and main motional processes could be generalized for this type of elastomers.

7.
Chemphyschem ; 13(17): 3958-65, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23001812

RESUMO

An azobenzene derivative, namely diheptylazobenzene, showing the nematic and smectic A liquid crystalline phases, was investigated by means of a combined approach based on NMR and DFT calculations. (14)N NMR quadrupole- and chemical-shift-perturbed spectra were acquired in the whole mesophasic range, providing both experimental quadrupolar splittings and chemical shift anisotropy values. On the same mesogen, deuterium labelled at the α-position of the hydrocarbon chain, (2)H NMR quadrupole-perturbed spectra were recorded. The analysis of these NMR data was performed with the help of ab initio calculations, in vacuo and by taking into account the effect of the anisotropic environment typical of liquid crystals, by using the IEF-PCM model. The geometry optimizations of the azomesogen in the trans and cis configurations were performed by DFT calculations employing the combination of B3LYP functional with the 6-311G(d) basis set. The analysis of experimental NMR data was performed by considering the trans configuration as the most populated one and the corresponding quadrupolar tensors and chemical shielding tensors were determined at the DFT level of theory. The main result of this work is the determination of a relatively high and temperature-dependent molecular biaxiality of the trans state of this azomesogen.

8.
Nat Commun ; 7: 13140, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713478

RESUMO

The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(5 Pt 1): 050701, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20364940

RESUMO

We demonstrate that photoisomerizable liquid-crystal elastomer soft films can be used as tunable holographic gratings. Optomechanical mechanism of imprinting one-dimensional grating structure into the soft matrix by two-beam uv laser interference can be clearly resolved from the time dependence of the reading beam diffraction patterns. We analyze the observed response in terms of cis-trans isomerization-controlled modulation of the grating profile. The grating period can be tuned reversibly by stretching or contraction of the specimen, either thermomechanically or by applying external stress. Temperature-induced modifications of the grating parameters in the vicinity of the nematic-paranematic phase transition are also examined.


Assuntos
Elastômeros/química , Elastômeros/efeitos da radiação , Cristais Líquidos/química , Cristais Líquidos/efeitos da radiação , Refratometria/instrumentação , Desenho de Equipamento , Luz , Refratometria/métodos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA