Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(19): 3693-3711.e10, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36108633

RESUMO

Phase separation can concentrate biomolecules and accelerate reactions. However, the mechanisms and principles connecting this mesoscale organization to signaling dynamics are difficult to dissect because of the pleiotropic effects associated with disrupting endogenous condensates. To address this limitation, we engineered new phosphorylation reactions within synthetic condensates. We generally found increased activity and broadened kinase specificity. Phosphorylation dynamics within condensates were rapid and could drive cell-cycle-dependent localization changes. High client concentration within condensates was important but not the main factor for efficient phosphorylation. Rather, the availability of many excess client-binding sites together with a flexible scaffold was crucial. Phosphorylation within condensates was also modulated by changes in macromolecular crowding. Finally, the phosphorylation of the Alzheimer's-disease-associated protein Tau by cyclin-dependent kinase 2 was accelerated within condensates. Thus, condensates enable new signaling connections and can create sensors that respond to the biophysical properties of the cytoplasm.


Assuntos
Transdução de Sinais , Proteínas tau , Quinase 2 Dependente de Ciclina/metabolismo , Citoplasma/metabolismo , Humanos , Substâncias Macromoleculares/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Cell ; 156(5): 963-74, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24581495

RESUMO

Protein folding in the cell relies on the orchestrated action of conserved families of molecular chaperones, the Hsp70 and Hsp90 systems. Hsp70 acts early and Hsp90 late in the folding path, yet the molecular basis of this timing is enigmatic, mainly because the substrate specificity of Hsp90 is poorly understood. Here, we obtained a structural model of Hsp90 in complex with its natural disease-associated substrate, the intrinsically disordered Tau protein. Hsp90 binds to a broad region in Tau that includes the aggregation-prone repeats. Complementarily, a 106-Å-long substrate-binding interface in Hsp90 enables many low-affinity contacts. This allows recognition of scattered hydrophobic residues in late folding intermediates that remain after early burial of the Hsp70 sites. Our model resolves the paradox of how Hsp90 specifically selects for late folding intermediates but also for some intrinsically disordered proteins-through the eyes of Hsp90 they look the same.


Assuntos
Proteínas tau/química , Doença de Alzheimer/tratamento farmacológico , Sequência de Aminoácidos , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas tau/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(50): e2308858120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048471

RESUMO

Gene silencing is intimately connected to DNA condensation and the formation of transcriptionally inactive heterochromatin by Heterochromatin Protein 1α (HP1α). Because heterochromatin foci are dynamic and HP1α can promote liquid-liquid phase separation, HP1α-mediated phase separation has been proposed as a mechanism of chromatin compaction. The molecular basis of HP1α-driven phase separation and chromatin compaction and the associated regulation by trimethylation of lysine 9 in histone 3 (H3K9me3), which is the hallmark of constitutive heterochromatin, is however largely unknown. Using a combination of chromatin compaction and phase separation assays, site-directed mutagenesis, and NMR-based interaction analysis, we show that human HP1α can compact chromatin in the absence of liquid-liquid phase separation. We further demonstrate that H3K9-trimethylation promotes compaction of chromatin arrays through multimodal interactions. The results provide molecular insights into HP1α-mediated chromatin compaction and thus into the role of human HP1α in the regulation of gene silencing.


Assuntos
Cromatina , Heterocromatina , Humanos , Cromatina/genética , Heterocromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Histonas/genética , Histonas/metabolismo , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135879

RESUMO

The microtubule-associated protein (MAP) Tau is an intrinsically disordered protein (IDP) primarily expressed in axons, where it functions to regulate microtubule dynamics, modulate motor protein motility, and participate in signaling cascades. Tau misregulation and point mutations are linked to neurodegenerative diseases, including progressive supranuclear palsy (PSP), Pick's disease, and Alzheimer's disease. Many disease-associated mutations in Tau occur in the C-terminal microtubule-binding domain of the protein. Effects of C-terminal mutations in Tau have led to the widely accepted disease-state theory that missense mutations in Tau reduce microtubule-binding affinity or increase Tau propensity to aggregate. Here, we investigate the effect of an N-terminal arginine to leucine mutation at position 5 in Tau (R5L), associated with PSP, on Tau-microtubule interactions using an in vitro reconstituted system. Contrary to the canonical disease-state theory, we determine that the R5L mutation does not reduce Tau affinity for the microtubule using total internal reflection fluorescence microscopy. Rather, the R5L mutation decreases the ability of Tau to form larger-order complexes, or Tau patches, at high concentrations of Tau. Using NMR, we show that the R5L mutation results in a local structural change that reduces interactions of the projection domain in the presence of microtubules. Altogether, these results challenge both the current paradigm of how mutations in Tau lead to disease and the role of the projection domain in modulating Tau behavior on the microtubule surface.


Assuntos
Microtúbulos/metabolismo , Proteínas tau/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Humanos , Microtúbulos/química , Microtúbulos/genética , Mutação , Proteínas tau/química , Proteínas tau/genética
5.
Chem Rev ; 122(6): 6719-6748, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35179885

RESUMO

Motions in biomolecules are critical for biochemical reactions. In cells, many biochemical reactions are executed inside of biomolecular condensates formed by ultradynamic intrinsically disordered proteins. A deep understanding of the conformational dynamics of intrinsically disordered proteins in biomolecular condensates is therefore of utmost importance but is complicated by diverse obstacles. Here we review emerging data on the motions of intrinsically disordered proteins inside of liquidlike condensates. We discuss how liquid-liquid phase separation modulates internal motions across a wide range of time and length scales. We further highlight the importance of intermolecular interactions that not only drive liquid-liquid phase separation but appear as key determinants for changes in biomolecular motions and the aging of condensates in human diseases. The review provides a framework for future studies to reveal the conformational dynamics of intrinsically disordered proteins in the regulation of biomolecular condensate chemistry.


Assuntos
Proteínas Intrinsicamente Desordenadas , Condensados Biomoleculares , Humanos , Proteínas Intrinsicamente Desordenadas/química , Conformação Molecular
6.
Biol Chem ; 404(8-9): 839-844, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37331973

RESUMO

The repetitive heptads in the C-terminal domain (CTD) of RPB1, the largest subunit of RNA Polymerase II (Pol II), play a critical role in the regulation of Pol II-based transcription. Recent findings on the structure of the CTD in the pre-initiation complex determined by cryo-EM and the novel phase separation properties of key transcription components offers an expanded mechanistic interpretation of the spatiotemporal distribution of Pol II during transcription. Current experimental evidence further suggests an exquisite balance between CTD's local structure and an array of multivalent interactions that drive phase separation of Pol II and thus shape its transcriptional activity.


Assuntos
RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fosforilação
7.
Chemistry ; 29(17): e202203493, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36579699

RESUMO

Reorientational dynamics of intrinsically disordered proteins (IDPs) contain multiple motions often clustered around three motional modes: ultrafast librational motions of amide groups, fast local backbone conformational fluctuations and slow chain segmental motions. This dynamic picture is mainly based on 15 N NMR relaxation studies of IDPs at relatively low temperatures where the amide-water proton exchange rates are sufficiently small. Less is known, however, about the dynamics of IDPs at more physiological temperatures. Here, we investigate protein dynamics in a 441-residue long IDP, tau protein, in the temperature range from 0-25 °C, using 15 N NMR relaxation rates and spectral density analysis. While at these temperatures relaxation rates are still better described in terms of amide group librational motions, local backbone dynamics and chain segmental motions, the temperature-dependent trend of spectral densities suggests that the timescales of fast backbone conformational fluctuations and slower chain segmental motions might become inseparable at higher temperatures. Our data demonstrate the remarkable dynamic plasticity of this prototypical IDP and highlight the need for dynamic studies of IDPs at multiple temperatures.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas tau , Temperatura , Conformação Proteica , Espectroscopia de Ressonância Magnética , Proteínas Intrinsicamente Desordenadas/química , Amidas
8.
Proc Natl Acad Sci U S A ; 117(6): 2948-2956, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31974312

RESUMO

The spliceosome consists of five small RNAs and more than 100 proteins. Almost 50% of the human spliceosomal proteins were predicted to be intrinsically disordered or to contain disordered regions, among them the G-patch protein Spp2. The G-patch region of Spp2 binds to the DEAH-box ATPase Prp2, and both proteins together are essential for promoting the transition from the Bact to the catalytically active B* spliceosome. Here we show by circular dichroism and nuclear magnetic resonance (NMR) spectroscopy that Spp2 is intrinsically disordered in solution. Crystal structures of a complex consisting of Prp2-ADP and the G-patch domain of Spp2 demonstrate that the G-patch gains a defined fold when bound to Prp2. While the N-terminal region of the G-patch always folds into an α-helix in five different crystal structures, the C-terminal part is able to adopt two alternative conformations. NMR studies further revealed that the N-terminal part of the Spp2 G-patch, which is the most conserved region in different G-patch proteins, transiently samples helical conformations, possibly facilitating a conformational selection binding mechanism. The structural analysis unveils the role of conserved residues of the G-patch in the dynamic interaction mode of Spp2 with Prp2, which is vital to maintain the binding during the Prp2 domain movements needed for RNA translocation.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Ligação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
9.
Angew Chem Int Ed Engl ; 62(17): e202218078, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36847235

RESUMO

Liquid-Liquid phase separation has emerged as fundamental process underlying the formation of biomolecular condensates. Insights into the composition and structure of biomolecular condensates is, however, complicated by their molecular complexity and dynamics. Here, we introduce an improved spatially-resolved NMR experiment that enables quantitative analysis of the physico-chemical composition of multi-component biomolecular condensates in equilibrium and label-free. Application of spatially-resolved NMR to condensates formed by the Alzheimer's disease-associated protein Tau demonstrates decreased water content, exclusion of the molecular crowding agent dextran, presence of a specific chemical environment of the small molecule DSS, and ≈150-fold increased concentration of Tau inside the condensate. The results suggest that spatially-resolved NMR can have a major impact in understanding the composition and physical chemistry of biomolecular condensates.


Assuntos
Doença de Alzheimer , Condensados Biomoleculares , Humanos , Proteínas 14-3-3 , Físico-Química , Imageamento por Ressonância Magnética , Fenômenos Químicos
10.
Semin Cell Dev Biol ; 99: 202-214, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31260737

RESUMO

Cells contain multiple compartments dedicated to the regulation and control of biochemical reactions. Cellular compartments that are not surrounded by membranes can rapidly form and dissolve in response to changes in the cellular environment. The physicochemical processes that underlie the formation of non-membrane-bound compartments in vivo are connected to liquid-liquid phase separation of proteins and nucleic acids in vitro. Recent evidence suggests that the protein tau, which plays an important role in Alzheimer's disease and other neurodegenerative disorders, phase separates in solution, forms tau phases with microtubules, and associates with phase-separated RNA-binding protein granules in cells. Here we review the experimental evidence that supports the ability of tau to phase separate in solution and form biomolecular condensates in cells. As for other disease-relevant proteins, the physiological and pathological functions of tau are tightly connected - through loss of normal function or gain of toxic function - and we therefore discuss how tau phase separation plays a role for both, and with respect to different cellular functions of tau.


Assuntos
Proteínas tau/química , Proteínas tau/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
11.
J Am Chem Soc ; 144(35): 16157-16163, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36018855

RESUMO

Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) and the action of molecular chaperones are tightly connected. An important class of molecular chaperones are peptidyl prolyl isomerases, which enhance the cis/trans-isomerization of proline. However, little is known about the impact of peptidyl prolyl isomerases on the LLPS of IDPs, which often contain many prolines. Here, we demonstrate that the most ubiquitous peptidyl prolyl isomerase, peptidyl prolyl isomerase A (PPIA), concentrates inside liquid-like droplets formed by the Alzheimer's disease-associated protein tau, as well as inside RNA-induced coacervates of a proline-arginine dipeptide repeat protein. We further show that the recruitment of PPIA into the IDP droplets triggers their dissolution and return to a single mixed phase. NMR-based binding and proline isomerization studies provide insights into the mechanism of LLPS modulation. Together, the results establish a regulatory role of proline isomerases on the liquid-liquid phase separation of proline-rich IDPs.


Assuntos
Proteínas Intrinsicamente Desordenadas , Peptidilprolil Isomerase , Chaperonas Moleculares , Peptidilprolil Isomerase/metabolismo , Prolina/química , Proteínas tau/metabolismo
12.
J Am Chem Soc ; 144(6): 2501-2510, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35130691

RESUMO

Intrinsically disordered proteins (IDPs) are implicated in many human diseases. They have generally not been amenable to conventional structure-based drug design, however, because their intrinsic conformational variability has precluded an atomic-level understanding of their binding to small molecules. Here we present long-time-scale, atomic-level molecular dynamics (MD) simulations of monomeric α-synuclein (an IDP whose aggregation is associated with Parkinson's disease) binding the small-molecule drug fasudil in which the observed protein-ligand interactions were found to be in good agreement with previously reported NMR chemical shift data. In our simulations, fasudil, when bound, favored certain charge-charge and π-stacking interactions near the C terminus of α-synuclein but tended not to form these interactions simultaneously, rather breaking one of these interactions and forming another nearby (a mechanism we term dynamic shuttling). Further simulations with small molecules chosen to modify these interactions yielded binding affinities and key structural features of binding consistent with subsequent NMR experiments, suggesting the potential for MD-based strategies to facilitate the rational design of small molecules that bind with disordered proteins.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Proteínas Intrinsicamente Desordenadas/metabolismo , alfa-Sinucleína/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/química , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/metabolismo , Sequência de Aminoácidos , Ligação de Hidrogênio , Proteínas Intrinsicamente Desordenadas/química , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
13.
Phys Chem Chem Phys ; 24(10): 6169-6175, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35229098

RESUMO

Biomolecular phase separation plays a key role in the spatial organization of cellular activities. Dynamic formation and rapid component exchange between phase separated cellular bodies and their environment are crucial for their function. Here, we employ a well-established phase separating model system, namely, a triethylamine (TEA)-water mixture, and develop an NMR approach to detect the exchange of scaffolding TEA molecules between separate phases and determine the underlying exchange rate. We further demonstrate how the advantageous NMR properties of fluorine nuclei provide access to otherwise inaccessible exchange processes of a client molecule. The developed NMR-based approach allows quantitative monitoring of the effect of regulatory factors on component exchange and facilitates "exchange"-based screening and optimization of small molecules against druggable biomolecular targets located inside condensed phases.


Assuntos
Flúor , Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Ressonância Magnética Nuclear Biomolecular
14.
Cell Mol Life Sci ; 78(5): 2355-2370, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32997199

RESUMO

Membrane remodeling is a critical process for many membrane trafficking events, including clathrin-mediated endocytosis. Several molecular mechanisms for protein-induced membrane curvature have been described in some detail. Contrary, the effect that the physico-chemical properties of the membrane have on these processes is far less well understood. Here, we show that the membrane binding and curvature-inducing ENTH domain of epsin1 is regulated by phosphatidylserine (PS). ENTH binds to membranes in a PI(4,5)P2-dependent manner but only induces curvature in the presence of PS. On PS-containing membranes, the ENTH domain forms rigid homo-oligomers and assembles into clusters. Membrane binding and membrane remodeling can be separated by structure-to-function mutants. Such oligomerization mutants bind to membranes but do not show membrane remodeling activity. In vivo, they are not able to rescue defects in epidermal growth factor receptor (EGFR) endocytosis in epsin knock-down cells. Together, these data show that the membrane lipid composition is important for the regulation of protein-dependent membrane deformation during clathrin-mediated endocytosis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Clatrina/metabolismo , Endocitose , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Sítios de Ligação/genética , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Eletrônica , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico
15.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408855

RESUMO

Tau is a neuronal protein that stabilizes axonal microtubules (MTs) in the central nervous system. In Alzheimer's disease (AD) and other tauopathies, phosphorylated Tau accumulates in intracellular aggregates, a pathological hallmark of these diseases. However, the chronological order of pathological changes in Tau prior to its cytosolic aggregation remains unresolved. These include its phosphorylation and detachment from MTs, mislocalization into the somatodendritic compartment, and oligomerization in the cytosol. Recently, we showed that Tau can interact with phenylalanine-glycine (FG)-rich nucleoporins (Nups), including Nup98, that form a diffusion barrier inside nuclear pore complexes (NPCs), leading to defects in nucleocytoplasmic transport. Here, we used surface plasmon resonance (SPR) and bio-layer interferometry (BLI) to investigate the molecular details of Tau:Nup98 interactions and determined how Tau phosphorylation and oligomerization impact the interactions. Importantly, phosphorylation, but not acetylation, strongly facilitates the accumulation of Tau with Nup98. Oligomerization, however, seems to inhibit Tau:Nup98 interactions, suggesting that Tau-FG Nup interactions occur prior to oligomerization. Overall, these results provide fundamental insights into the molecular mechanisms of Tau-FG Nup interactions within NPCs, which might explain how stress-and disease-associated posttranslational modifications (PTMs) may lead to Tau-induced nucleocytoplasmic transport (NCT) failure. Intervention strategies that could rescue Tau-induced NCT failure in AD and tauopathies will be further discussed.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Tauopatias , Transporte Ativo do Núcleo Celular , Humanos , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fosforilação , Tauopatias/metabolismo , Proteínas tau/metabolismo
16.
J Neurochem ; 159(3): 554-573, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34176164

RESUMO

Regional iron accumulation and α-synuclein (α-syn) spreading pathology within the central nervous system are common pathological findings in Parkinson's disease (PD). Whereas iron is known to bind to α-syn, facilitating its aggregation and regulating α-syn expression, it remains unclear if and how iron also modulates α-syn spreading. To elucidate the influence of iron on the propagation of α-syn pathology, we investigated α-syn spreading after stereotactic injection of α-syn preformed fibrils (PFFs) into the striatum of mouse brains after neonatal brain iron enrichment. C57Bl/6J mouse pups received oral gavage with 60, 120, or 240 mg/kg carbonyl iron or vehicle between postnatal days 10 and 17. At 12 weeks of age, intrastriatal injections of 5-µg PFFs were performed to induce seeding of α-syn aggregates. At 90 days post-injection, PFFs-injected mice displayed long-term memory deficits, without affection of motor behavior. Interestingly, quantification of α-syn phosphorylated at S129 showed reduced α-syn pathology and attenuated spreading to connectome-specific brain regions after brain iron enrichment. Furthermore, PFFs injection caused intrastriatal microglia accumulation, which was alleviated by iron in a dose-dependent way. In primary cortical neurons in a microfluidic chamber model in vitro, iron application did not alter trans-synaptic α-syn propagation, possibly indicating an involvement of non-neuronal cells in this process. Our study suggests that α-syn PFFs may induce cognitive deficits in mice independent of iron. However, a redistribution of α-syn aggregate pathology and reduction of striatal microglia accumulation in the mouse brain may be mediated via iron-induced alterations of the brain connectome.


Assuntos
Química Encefálica , Ferro/farmacologia , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade , Animais , Animais Recém-Nascidos , Conectoma , Corpo Estriado , Relação Dose-Resposta a Droga , Feminino , Humanos , Ferro/administração & dosagem , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Camundongos Endogâmicos C57BL , Microglia/patologia , Microinjeções , Atividade Motora/efeitos dos fármacos , alfa-Sinucleína/administração & dosagem
17.
Hum Mol Genet ; 28(1): 31-50, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219847

RESUMO

Alpha-synuclein (aSyn) is a central player in Parkinson's disease (PD) but the precise molecular mechanisms underlying its pathogenicity remain unclear. It has recently been suggested that nuclear aSyn may modulate gene expression, possibly via interactions with DNA. However, the biological behavior of aSyn in the nucleus and the factors affecting its transcriptional role are not known. Here, we investigated the mechanisms underlying aSyn-mediated transcription deregulation by assessing its effects in the nucleus and the impact of phosphorylation in these dynamics. We found that aSyn induced severe transcriptional deregulation, including the downregulation of important cell cycle-related genes. Importantly, transcriptional deregulation was concomitant with reduced binding of aSyn to DNA. By forcing the nuclear presence of aSyn in the nucleus (aSyn-NLS), we found the accumulation of high molecular weight aSyn species altered gene expression and reduced toxicity when compared with the wild-type or exclusively cytosolic protein. Interestingly, nuclear localization of aSyn, and the effect on gene expression and cytotoxicity, was also modulated by phosphorylation on serine 129. Thus, we hypothesize that the role of aSyn on gene expression and, ultimately, toxicity, may be modulated by the phosphorylation status and nuclear presence of different aSyn species. Our findings shed new light onto the subcellular dynamics of aSyn and unveil an intricate interplay between subcellular location, phosphorylation and toxicity, opening novel avenues for the design of future strategies for therapeutic intervention in PD and other synucleinopathies.


Assuntos
alfa-Sinucleína/metabolismo , alfa-Sinucleína/fisiologia , Animais , Linhagem Celular , Núcleo Celular , Proteínas de Ligação a DNA , Regulação para Baixo , Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Sinais de Localização Nuclear/fisiologia , Doença de Parkinson/patologia , Fosforilação , Cultura Primária de Células , Ratos
18.
Chembiochem ; 22(21): 3049-3059, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34375027

RESUMO

Alzheimer's disease and other Tauopathies are associated with neurofibrillary tangles composed of Tau protein, as well as toxic Tau oligomers. Therefore, inhibitors of pathological Tau aggregation are potentially useful candidates for future therapies targeting Tauopathies. Two hexapeptides within Tau, designated PHF6* (275-VQIINK-280) and PHF6 (306-VQIVYK-311), are known to promote Tau aggregation. Recently, the PHF6* segment has been described as the more potent driver of Tau aggregation. We therefore employed mirror-image phage display with a large peptide library to identify PHF6* fibril binding peptides consisting of D-enantiomeric amino acids. The suitability of D-enantiomeric peptides for in vivo applications, which are protease stable and less immunogenic than L-peptides, has already been demonstrated. The identified D-enantiomeric peptide MMD3 and its retro-inverso form, designated MMD3rev, inhibited in vitro fibrillization of the PHF6* peptide, the repeat domain of Tau as well as full-length Tau. Dynamic light scattering, pelleting assays and atomic force microscopy demonstrated that MMD3 prevents the formation of tau ß-sheet-rich fibrils by diverting Tau into large amorphous aggregates. NMR data suggest that the D-enantiomeric peptides bound to Tau monomers with rather low affinity, but ELISA (enzyme-linked immunosorbent assay) data demonstrated binding to PHF6* and full length Tau fibrils. In addition, molecular insight into the binding mode of MMD3 to PHF6* fibrils were gained by in silico modelling. The identified PHF6*-targeting peptides were able to penetrate cells. The study establishes PHF6* fibril binding peptides consisting of D-enantiomeric amino acids as potential molecules for therapeutic and diagnostic applications in AD research.


Assuntos
Peptídeos/farmacologia , Proteínas tau/antagonistas & inibidores , Humanos , Biblioteca de Peptídeos , Peptídeos/química , Agregados Proteicos/efeitos dos fármacos , Proteínas tau/metabolismo
19.
Mov Disord ; 36(7): 1624-1633, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33617693

RESUMO

BACKGROUND: The SNCA gene encoding α-synuclein (αSyn) is the first gene identified to cause autosomal-dominant Parkinson's disease (PD). OBJECTIVE: We report the identification of a novel heterozygous A30G mutation of the SNCA gene in familial PD and describe clinical features of affected patients, genetic findings, and functional consequences. METHODS: Whole exome sequencing was performed in the discovery family proband. Restriction digestion with Bbvl was used to screen SNCA A30G in two validation cohorts. The Greek cohort included 177 familial PD probands, 109 sporadic PD cases, and 377 neurologically healthy controls. The German cohort included 136 familial PD probands, 380 sporadic PD cases, and 116 neurologically healthy controls. We also conducted haplotype analysis using 13 common single nucleotide variants around A30G to determine the possibility of a founder effect for A30G. We then used biophysical methods to characterize A30G αSyn. RESULTS: We identified a novel SNCA A30G (GRCh37, Chr4:90756730, c.89 C>G) mutation that co-segregated with the disease in five affected individuals of three Greek families and was absent from controls. A founder effect was strongly suggested by haplotype analysis. The A30G mutation had a local effect on the intrinsically disordered structure of αSyn, slightly perturbed membrane binding, and promoted fibril formation. CONCLUSION: Based on the identification of A30G co-segregating with the disease in three families, the absence of the mutation in controls and population databases, and the observed functional effects, we propose SNCA A30G as a novel causative mutation for familial PD. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Efeito Fundador , Grécia , Humanos , Mutação/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética
20.
Eur Biophys J ; 50(2): 173-180, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33354729

RESUMO

Translocator Protein (18 kDa) (TSPO) is a mitochondrial transmembrane protein commonly used as a biomarker for neuroinflammation and is also a potential therapeutic target in neurodegenerative diseases. Despite intensive research efforts, the function of TSPO is still largely enigmatic. Deciphering TSPO structure in the native lipid environment is essential to gain insight into its cellular activities and to design improved diagnostic and therapeutic ligands. Here, we discuss the influence of lipid composition on the structure of mammalian TSPO embedded into lipid bilayers on the basis of solid-state NMR experiments. We further highlight that cholesterol can influence both the tertiary and quaternary TSPO structure and also influence TSPO localization in mitochondria-associated endoplasmic reticulum membranes.


Assuntos
Membrana Celular/metabolismo , Espectroscopia de Ressonância Magnética , Receptores de GABA/química , Receptores de GABA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA