Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Dev Psychobiol ; 64(7): e22330, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282762

RESUMO

This study aimed to evaluate the effects of maternal exercise on alterations induced by prenatal stress in markers of the inflammatory process and the hypothalamic-pituitary-adrenal axis in the brain and lungs of neonatal mice. Female Balb/c mice were divided into three groups: control, prenatal restraint stress, prenatal restraint stress and physical exercise before and during the gestational period. On day 0 (PND0) and 10 (PND10), mice were euthanized for brain and lung analyses. The gene expression of GR, MR, IL-6, IL-10, and TNF in the brain and lungs and the protein expression of MMP-2 in the lungs were analyzed. Maternal exercise reduced IL-6 and IL-10 gene expression in the brain of PND0 mice. Prenatal stress and maternal exercise decreased GR, MR, IL-6, and TNF gene expression in the lungs of PND0 mice. In the hippocampus of PND10 females, exercise inhibited the effects of prenatal stress on the expression of MR, IL-6, and IL-10. In the lungs of PND10 females, exercise prevented the decrease in GR expression caused by prenatal stress. In the hippocampus and lungs of PND10 males, prenatal stress decreased GR gene expression. Our findings confirm the effects induced by prenatal stress and demonstrate that physical exercise before and during the gestational period may have a protective role on inflammatory changes.


Assuntos
Sistema Hipófise-Suprarrenal , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Masculino , Animais , Feminino , Camundongos , Humanos , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Interleucina-10/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Animais Recém-Nascidos , Interleucina-6/metabolismo , Estresse Psicológico/metabolismo , Encéfalo/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Corticosterona , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Restrição Física/efeitos adversos
2.
J Cell Physiol ; 235(9): 6073-6084, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31970778

RESUMO

Acute lung injury (ALI) is an inflammatory process, and has high incidence and mortality. ALI and the acute respiratory distress syndrome are two common complications worldwide that result in acute lung failure, sepsis, and death. Pro-inflammatory substances, such as cytokines and chemokines, are responsible for activating the body's defense mechanisms and usually mediate inflammatory processes. Therefore, the research of substances that decrease the uncontrolled response of organism is seen as potential for patients with ALI. Octyl gallate (OG) is a phenolic compound with therapeutic actions namely antimicrobial, antiviral, and antifungal. In this study, we evaluated its action on lipopolysaccharide (LPS)-activated alveolar macrophages RAW 264.7 cells and ALI in male mice. Our results demonstrated protective effects of OG in alveolar macrophages activated with LPS and mice with ALI. The OG treatment significantly decreased the inflammatory markers in both studies in vitro and in vivo. The data suggested that OG can act as an anti-inflammatory agent for ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Ácido Gálico/análogos & derivados , Inflamação/tratamento farmacológico , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Ácido Gálico/farmacologia , Humanos , Inflamação/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/patologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7
3.
J Cell Physiol ; 235(2): 1838-1849, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31332773

RESUMO

Asthma is characterized by the influx of inflammatory cells, especially of eosinophils as well as reactive oxygen species (ROS) production, driven by the release of the T helper 2 (Th2)-cell-associated cytokines. The cholinergic anti-inflammatory pathway (CAP) inhibit cytokines production and controls inflammation. Thus, we investigated the effects of pharmacological activation of CAP by neostigmine on oxidative stress and airway inflammation in an allergic asthma model. After the OVA challenge, mice were treated with neostigmine. We showed that CAP activation by neostigmine reduced the levels of pro-inflammatory cytokines (IL-4, IL-5, IL-13, IL-1ß, and TNF-α), which resulted in a decrease of eosinophils influx. Furthermore, neostigmine also conferred airway protection against oxidative stress, attenuating ROS production through the increase of antioxidant defense, evidenced by the catalase (CAT) activity. We propose, for the first time, that pharmacological activation of the CAP can lead to new possibilities in the therapeutic management of allergic asthma.


Assuntos
Asma/imunologia , Inflamação/imunologia , Neuroimunomodulação/fisiologia , Estresse Oxidativo/imunologia , Animais , Asma/metabolismo , Asma/patologia , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neostigmina/farmacologia , Neuroimunomodulação/efeitos dos fármacos
4.
J Cell Physiol ; 235(1): 267-280, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31206674

RESUMO

Studies have shown autophagy participation in the immunopathology of inflammatory diseases. However, autophagy role in asthma and in eosinophil extracellular traps (EETs) release is poorly understood. Here, we attempted to investigate the autophagy involvement in EETs release and in lung inflammation in an experimental asthma model. Mice were sensitized with ovalbumin (OVA), followed by OVA challenge. Before the challenge with OVA, mice were treated with an autophagy inhibitor, 3-methyladenine (3-MA). We showed that 3-MA treatment decreases the number of eosinophils, eosinophil peroxidase (EPO) activity, goblet cells hyperplasia, proinflammatory cytokines, and nuclear factor kappa B (NFκB) p65 immunocontent in the lung. Moreover, 3-MA was able to improve oxidative stress, mitochondrial energy metabolism, and Na+ , K+ -ATPase activity. We demonstrated that treatment with autophagy inhibitor 3-MA reduced EETs formation in the airway. On the basis of our results, 3-MA treatment can be an interesting alternative for reducing lung inflammation, oxidative stress, mitochondrial damage, and EETs formation in asthma.


Assuntos
Adenina/análogos & derivados , Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Autofagia/imunologia , Armadilhas Extracelulares/imunologia , Adenina/farmacologia , Animais , Asma/induzido quimicamente , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Peroxidase de Eosinófilo/metabolismo , Eosinófilos/imunologia , Feminino , Células Caliciformes/patologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Ovalbumina , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismo
5.
J Cell Physiol ; 234(12): 23633-23646, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31180592

RESUMO

In asthma, there are high levels of inflammatory mediators, reactive oxygen species (ROS), and eosinophil extracellular traps (EETs) formation in airway. Here, we attempted to investigate the ROS involvement in EETs release and airway inflammation in OVA-challenged mice. Before the intranasal challenge with ovalbumin (OVA), animals were treated with two ROS inhibitors, N-acetylcysteine (NAC) or diphenyleneiodonium (DPI). We showed that NAC treatment reduced inflammatory cells in lung. DPI and NAC treatments reduced eosinophil peroxidase (EPO), goblet cells hyperplasia, proinflammatory cytokines, NFκB p65 immunocontent, and oxidative stress in lung. However, only the NAC treatment improved mitochondrial energy metabolism. Moreover, the treatments with DPI and NAC reduced EETs release in airway. This is the first study to show that ROS are needed for EETs formation in asthma. Based on our results, NAC and DPI treatments can be an interesting alternative for reducing airway inflammation, mitochondrial damage, and EETs release in asthma.


Assuntos
Asma/patologia , Eosinófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Pulmão/patologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Animais , Citocinas/metabolismo , Metabolismo Energético/fisiologia , Peroxidase de Eosinófilo/metabolismo , Feminino , Células Caliciformes/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Oniocompostos/farmacologia , Ovalbumina/toxicidade , Estresse Oxidativo/fisiologia , Fator de Transcrição RelA/metabolismo
6.
Respir Physiol Neurobiol ; 309: 104002, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36566004

RESUMO

Acute lung injury (ALI) is a disease of high prevalence and is characterized by the excessive production of inflammatory mediators in the lungs of people sick. Inflammation is the major characteristic of ALI and studies report that inhibition of inflammatory cytokines could be an alternative treatment. Statins such as Simvastatin (SV) are known to their use for cholesterol reduction but also for inflammatory and immunoregulatory processes. In this study, we evaluated the effects of SV on LPS-induced alveolar macrophages and in ALI mice model. Our study has demonstrated the protective effects of SV on LPS-activated alveolar macrophages RAW 264.7 and LPS-induced ALI in mice. SV treatment significantly inhibited the alveolar macrophages activation by decreasing the iNOS, IL-1ß, and IL-6 gene expression in vitro and in vivo. The treatment also decreased the inflammatory cells migration and the cytokines gene expression. Our findings suggest that SV can act as an anti-inflammatory agent for acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Sinvastatina/efeitos adversos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão/metabolismo , Citocinas/metabolismo
7.
Neurochem Int ; 158: 105384, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35787396

RESUMO

The present study aimed to evaluate the effects of treadmill maternal exercise on alterations induced by prenatal stress in neonatal mice. Female and male Balb/c mice were divided into five groups: control (CON), prenatal restraint stress (PNS), prenatal restraint stress and physical exercise before pregnancy (PNS + EX1), prenatal restraint stress and physical exercise during pregnancy (PNS + EX2), and prenatal restraint stress and physical exercise before and during pregnancy (PNS + EX3). Exercise was performed using a treadmill, at a speed of 10 m/min, for 60 min, 5 days a week. Maternal behavior was assessed on days 3, 4 and 5 postpartum (PPD). Placental gene expression of glucocorticoid receptor (GR), 11-ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2), 5-hydroxytryptamine receptor 1A (5HT1AR), and corticotropin releasing hormone receptor 1 (CRHR1) were analyzed. In neonatal mice, the gene expression of GR, mineralocorticoid receptor (MR), CRHR1, 5HTr1, oxytocin Receptor 1 (OXTr1), tropomyosin related kinase B (TRκB), brain-derived neurotrophic factor exon I (BDNF I), and BDNF IV was analyzed in the brain (PND0) and hippocampus (PND10). Maternal exercise improved (p < 0.05) maternal care. In the placenta, maternal exercise prevented (p < 0.01) the increase in GR expression caused by PNS. In the brain from PND0, exercise before pregnancy prevented (p = 0.002) the decreased CRHR1 expression promoted by PNS. In the hippocampus of PND10 males, PNS decreased (p = 0.0005) GR expression, and exercise before pregnancy prevented (p = 0.003) this effect. In PND10 females, maternal exercise prevented (p < 0.05) the PNS-induced increase in MR expression. PNS + EX2 males showed increased (p < 0.01) BDNF I gene expression and PNS + EX1 females demonstrated increased (p = 0.03) BDNF IV expression. In conclusion, maternal physical exercise may play a role in modulating maternal-fetal health and may contribute to preventing neurodevelopmental changes induced by prenatal stress.


Assuntos
Placenta , Efeitos Tardios da Exposição Pré-Natal , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Placenta/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/metabolismo
8.
Int J Dev Neurosci ; 82(2): 180-187, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34734422

RESUMO

Inflammatory markers represent important candidates responsible for the altered behavior and physiology observed after stressful experiences. In the maternal brain, the olfactory bulb (OB) is a key constituent of the neural circuit that mediates the reciprocal interaction between mother and infant. This study aimed to investigate the effects of stress during pregnancy on maternal behavior and inflammatory changes in the olfactory bulb of lactating mice. Female Balb/c mice were divided into two groups: control (CT) and restraint stress (RS). Maternal behavior was performed during the first 8 days of life of the offspring. On the 10th day after parturition, corticosterone, gene, and protein expression were assessed. Stress during pregnancy decreased the maternal index at postnatal day 4 and the nuclear factor-κB 1 (NFκB1) gene expression in the OB. Moreover, females from the RS group showed increased interleukin (IL-1ß) protein expression. In contrast, stressed females exhibited a decreased tumor necrosis factor (TNF-α) protein expression in the OB. In conclusion, exposure to stress during pregnancy was able to induce specific postnatal effects on maternal behavior and balance of inflammatory mediators in the OB.


Assuntos
Bulbo Olfatório , Efeitos Tardios da Exposição Pré-Natal , Animais , Corticosterona/metabolismo , Feminino , Humanos , Lactação , Comportamento Materno/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Estresse Psicológico
9.
Neurosci Lett ; 746: 135659, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33482306

RESUMO

Studies have shown that an adverse environment in utero influences fetal growth and development, leading to several neuroendocrine and behavioral changes in adult life. Nevertheless, the mechanisms involved in the long-term benefits of pregestational exercise are still poorly understood. Thus, this study aimed to evaluate the effects of physical exercise before the gestational period on memory behavior and gene expression in the hippocampus of adult mice submitted to prenatal stress. Female Balb/c mice were divided into three groups: control (CON), prenatal restraint stress (PNS), and exercise before the gestational period plus PNS (EX + PNS). When adults, male and female offspring were submitted to the object recognition test followed by the hippocampal evaluation of BDNF exons I and IV mRNA expression, as well as hypothalamic-pituitary-adrenal axis related genes. Pregestational exercise did not prevent the decreased recognition index, as well as GR and CRHR1 gene expression observed in PNS males. Conversely, prenatal stress did not influence female memory behavior. Moreover, exercise attenuated the effects of prenatal stress on female BDNF IV gene expression. The results indicate that pregestational exercise was able to prevent the effects of maternal stress on hippocampal BDNF IV gene expression in females, although no effects were seen on the stress-induced memory impairment in males.


Assuntos
Hipocampo/metabolismo , Memória de Longo Prazo/fisiologia , Condicionamento Físico Animal/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Corrida/fisiologia , Estresse Psicológico/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Teste de Esforço/tendências , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/psicologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/psicologia , Restrição Física/efeitos adversos , Restrição Física/psicologia , Corrida/psicologia , Estresse Psicológico/psicologia
10.
Neurochem Int ; 147: 105053, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961947

RESUMO

Maternal stress has been described as an important component in the offspring's cerebral development, altering the susceptibility to diseases in later life. Moreover, the postnatal period is essential for the development and integration of several peripheral and central systems related to the control of homeostasis. Thus, this study aimed to evaluate the effects of prenatal stress on the activation of cortical neurons, by performing experiments both under basal conditions and after KCl-induced depolarization. Female mice were divided in two groups: control and prenatal restraint stress. Cortical neurons from the offspring were obtained at gestational day 18. The effects of prenatal stress and KCl stimulations on cellular mortality, autophagy, gene expression, oxidative stress, and inflammation were evaluated. We found that neurons from PNS mice have decreased necrosis and autophagy after depolarization. Moreover, prenatal stress modulated the HPA axis, as observed by the increased GR and decreased 5HTr1 mRNA expression. The BDNF is an important factor for neuronal function and results demonstrated that KCl-induced depolarization increased the gene expression of BDNF I, BDNF IV, and TRκB. Furthermore, prenatal stress and KCl treatment induced significant alterations in oxidative and inflammatory markers. In conclusion, prenatal stress and stimulation with KCl may influence several markers related to neurodevelopment in cortical neurons from neonate mice, supporting the well-known long-term effects of maternal stress.


Assuntos
Morte Celular/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Estresse Oxidativo/fisiologia , Sistema Hipófise-Suprarrenal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Morte Celular/genética , Feminino , Masculino , Camundongos Endogâmicos BALB C , Neurônios/metabolismo , Gravidez , Restrição Física/métodos , Estresse Psicológico/metabolismo
11.
Int J Dev Neurosci ; 80(2): 86-95, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31909492

RESUMO

The present study aimed to investigate the long-term effects of exercise before pregnancy on changes induced by prenatal stress. Female and male Balb/c mice were divided into three groups: control (CON), prenatal restraint stress (PNS), and exercise before the gestational period plus PNS (EX + PNS). As adult, fear/anxiety behavior, corticosterone secretion, expression of hypothalamic-pituitary-adrenal (HPA)-related genes, as well as epigenetic modifications were evaluated. Exercise before gestation did not prevent the increased fear/anxiety behavior in PNS mice. A nearly significant (p = .06) basal corticosterone increase was observed in PNS males and the exercise before pregnancy reduced the stress-induced corticosterone increase in PNS females. In addition, an increase on prefrontal cortex (PFC) CRHR1 gene expression was observed in PNS females, which was attenuated by the exercise before gestation. We have also found a glucocorticoid receptor (GR) gene expression decrease in the prefrontal cortex in PNS males, as well as a histone H3 acetylation decrease (p = .06) close to the significance level. In conclusion, pregestational exercise may attenuate developmental changes induced by prenatal stress in a sex-dependent manner.


Assuntos
Condicionamento Físico Animal/fisiologia , Estresse Psicológico , Animais , Ansiedade/psicologia , Corticosterona/metabolismo , Epigênese Genética , Medo , Feminino , Sistema Hipotálamo-Hipofisário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sistema Hipófise-Suprarrenal , Gravidez , Receptores de Hormônio Liberador da Corticotropina/biossíntese , Receptores de Hormônio Liberador da Corticotropina/genética , Restrição Física , Caracteres Sexuais
12.
Brain Res ; 1722: 146355, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31356782

RESUMO

Stress has been considered as a risk factor for the development and aggravation of several diseases. The hypothalamic-pituitary-adrenal axis (HPA) is one of the main actors for the stress response and homeostasis maintenance. Positron emission tomography (PET) has been used to evaluate neuronal activity and to study brain regions that may be related to the HPA axis response. Since neuroimaging is an important tool in detecting neuroendocrine-related changes, we used fluorodeoxyglucose-18 (18F-FDG) and positron emission microtomography (microPET) to evaluate sexual differences in the glucose brain metabolism after 10, 30 and 40 min of acute stress in Balb/c mice. We also investigated the effects of restraint stress in blood, liver and adrenal gland 18F-FDG biodistribution using a gamma counter. A decreased glucose uptake in the whole brain in both females and males was found. Additionally, there were time and sex-dependent alterations in the 18F-FDG uptake after restraint stress in specific brain regions, indicating that males could be more vulnerable to the short-term effects of acute stress. According to the gamma counter biodistribution, only females showed a significant decreased glucose uptake in the blood, liver and right adrenal after restraint stress. In addition, in comparisons between the sexes, males showed a decreased glucose uptake in the whole brain and in several brain regions compared to females. In conclusion, exposure to acute restraint stress resulted in significant decreased glucose metabolism in the brain, with particular effects in different regions and organs in a sex-specific manner.


Assuntos
Encéfalo/metabolismo , Glucose/metabolismo , Caracteres Sexuais , Estresse Psicológico/metabolismo , Animais , Feminino , Fluordesoxiglucose F18 , Masculino , Camundongos Endogâmicos BALB C , Tomografia por Emissão de Pósitrons , Restrição Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA