Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 41(3): 284-295, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36929117

RESUMO

In the last 2 years, different pharmacological agents have been indicated as potential inhibitors of SARS-CoV-2 in vitro. Specifically, drugs termed as functional inhibitors of acid sphingomyelinase (FIASMAs) have proved to inhibit the SARS-CoV-2 replication using different types of cells. Those therapeutic agents share several chemical structure characteristics and some well-known representatives are fluoxetine, escitalopram, fluvoxamine, and others. Most of the FIASMAs are primarily used as effective therapeutic agents to treat different pathologies, therefore, they are natural drug candidates for repositioning strategy. In this review, we summarize the two main proposed mechanisms mediating acid sphingomyelinase (ASM) inhibition and how they can explain the inhibition of SARS-CoV-2 replication by FIASMAs. The first mechanism implies a disruption in the lysosomal pH fall as the endosome-lysosome moves toward the interior of the cell. In fact, changes in cholesterol levels in endosome-lysosome membranes, which are associated with ASM inhibition is thought to be mediated by lysosomal proton pump (ATP-ase) inactivation. The second mechanism involves the formation of an extracellular ceramide-rich domain, which is blocked by FIASMAs. The ceramide-rich domains are believed to facilitate the SARS-CoV-2 entrance into the host cells.


Assuntos
COVID-19 , SARS-CoV-2 , Esfingomielina Fosfodiesterase , Humanos , Ceramidas/metabolismo , Fluoxetina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo
2.
Biofouling ; 38(5): 427-440, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35670068

RESUMO

Candida krusei is a candidiasis etiological agent of relevance in the clinical setting because of its intrinsic resistance to fluconazole. Also, it has opened up new paths in the area of alternative therapeutic techniques. This project demonstrated the effects of diphenyl diselenide (PhSe)2 and p-cloro diphenyl diselenide (pCl-PhSe)2, two organochalcogen compounds, on relevant virulence factors for the early stage of the C. krusei host interaction and infection process. Both compounds inhibited adherence of C. krusei to both polystyrene surfaces and cervical epithelial cells and biofilm formation; the structure of the biofilm was also changed in a dose-dependent manner. In addition, both compounds inhibited C. krusei growth, but (PhSe)2 significantly increased the time duration of the lag phase and delayed the start of the exponential phase in growth kinetics. (PhSe)2 has more potential antifungal activity than (pCl-PhSe)2 in inhibiting the adherence to epithelial cells, biofilm formation, and growth of C. krusei.


Assuntos
Biofilmes , Fatores de Virulência , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Derivados de Benzeno , Fluconazol/farmacologia , Compostos Organosselênicos , Pichia
3.
Neurochem Res ; 46(1): 120-130, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32285377

RESUMO

Most pharmacological studies concerning the beneficial effects of organoselenium compounds have focused on their ability to mimic glutathione peroxidase (GPx). However, mechanisms other than GPx-like activity might be involved on their biological effects. This study was aimed to investigate and compare the protective effects of two well known [(PhSe)2 and PhSeZnCl] and two newly developed (MRK Picolyl and MRK Ester) organoselenium compounds against oxidative challenge in cultured neuronal HT22 cells. The thiol peroxidase and oxidase activities were performed using the glutathione reductase (GR)-coupled assay. In order to evaluate protective effects of the organoselenium compounds against oxidative challenge in neuronal HT22 cells, experiments based on glutamate-induced oxytosis and SIN-1-mediated peroxynitrite generation were performed. The thiol peroxidase activities of the studied organoselenium compounds were smaller than bovine erythrocytes GPx enzyme. Besides, (PhSe)2 and PhSeZnCl showed higher thiol peroxidase and lower thiol oxidase activities compared to the new compounds. MRK Picolyl and MRK Ester, which showed lower thiol peroxidase activity, showed higher thiol oxidase activity. Both pre- or co-treatment with (PhSe)2, PhSeZnCl, MRK Picolyl and MRK Ester protected HT22 cells against glutamate-induced cytotoxicity. (PhSe)2 and MRK Picolyl significantly prevented peroxinitrite-induced dihydrorhodamine oxidation, but this effect was observed only when HT22 were pre-treated with these compounds. The treatment with (PhSe)2 increased the protein expression of antioxidant defences (Prx3, CAT and GCLC) in HT22 cells. Taking together, our results suggest that the biological effects elicited by these compounds are not directly related to their GPx-mimetic and thiol oxidase activities, but might be linked to the up-regulation of endogenous antioxidant defences trough their thiol-modifier effects.


Assuntos
Antioxidantes/farmacologia , Neurônios/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Catalase/metabolismo , Bovinos , Linhagem Celular , Glutamato-Cisteína Ligase/metabolismo , Glutationa Peroxidase/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos
4.
Biofouling ; 37(2): 235-245, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33715534

RESUMO

Adhesion capacity on biological surfaces and biofilm formation is considered an important step in the infection process by Candida albicans. The ability of (PhSe)2 and (pCl-PhSe)2, two synthetic organic selenium (organochalcogen) compounds, to act on C. albicans virulence factors related to adhesion to human endocervical (HeLa) cell surfaces and their anti-biofilm activities was analyzed. Both organochalcogen compounds inhibited C. albicans adhesion to HeLa cells, dependent on compound concentrations. (PhSe)2 (at 20 µM; p = 0.0012) was significantly more effective than (pCl-PhSe)2 (at 20 µM; p = 0.0183) compared with the control. (PhSe)2 inhibited biofilm formation and decreased biofilm viability in both early and mature biofilms more efficiently than (pCl-PhSe)2. Overall, the organochalcogen compounds, especially (PhSe)2, were demonstrated to be effective antifungal drugs against C. albicans virulence factors related to epithelial cell surface adhesion and the formation and viability of biofilms.


Assuntos
Biofilmes , Candida albicans , Antifúngicos , Células HeLa , Humanos
5.
Molecules ; 26(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34771137

RESUMO

In this study, the interactions of ESIPT fluorescent lipophile-based benzazoles with bovine serum albumin (BSA) were studied and their binding affinity was evaluated. In phosphate-buffered saline (PBS) solution these compounds produce absorption maxima in the UV region and a main fluorescence emission with a large Stokes shift in the blue-green regions due to a proton transfer process in the excited state. The interactions of the benzazoles with BSA were studied using UV-Vis absorption and steady-state fluorescence spectroscopy. The observed spectral quenching of BSA indicates that these compounds could bind to BSA through a strong binding affinity afforded by a static quenching mechanism (Kq~1012 L·mol-1·s-1). The docking simulations indicate that compounds 13 and 16 bind closely to Trp134 in domain I, adopting similar binding poses and interactions. On the other hand, compounds 12, 14, 15, and 17 were bound between domains I and III and did not directly interact with Trp134.


Assuntos
Benzotiazóis/química , Lipídeos/química , Soroalbumina Bovina/química , Animais , Bovinos , Fluorescência , Estrutura Molecular , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
6.
Genet Mol Biol ; 41(3): 713-721, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30043835

RESUMO

The use of Drosophila as a scientific model is well established, but the use of cockroaches as experimental organisms has been increasing, mainly in toxicology research. Nauphoeta cinerea is one of the species that has been studied, and among its advantages is its easy laboratory maintenance. However, a limited amount of genetic data about N. cinerea is available, impeding gene identification and expression analyses, genetic manipulation, and a deeper understanding of its functional biology. Here we describe the N. cinerea fat body and head transcriptome, in order to provide a database of genetic sequences to better understand the metabolic role of these tissues, and describe detoxification and stress response genes. After removing low-quality sequences, we obtained 62,121 transcripts, of which more than 50% had a length of 604 pb. The assembled sequences were annotated according to their genes ontology (GO). We identified 367 genes related to stress and detoxification; among these, the more frequent were p450 genes. The results presented here are the first large-scale sequencing of N. cinerea and will facilitate the genetic understanding of the species' biochemistry processes in future works.

7.
Biochim Biophys Acta ; 1860(11 Pt A): 2510-2520, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27475002

RESUMO

BACKGROUND: Diphenylditelluride (PhTe)2 is a potent neurotoxin disrupting the homeostasis of the cytoskeleton. METHODS: Cultured astrocytes and neurons were incubated with (PhTe)2, receptor antagonists and enzyme inhibitors followed by measurement of the incorporation of [32P]orthophosphate into intermediate filaments (IFs). RESULTS: (PhTe)2 caused hyperphosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits (NFL, NFM and NFH) from primary astrocytes and neurons, respectively. These mechanisms were mediated by N-methyl-d-aspartate (NMDA) receptors, L-type voltage-dependent calcium channels (L-VDCCs) as well as metabotropic glutamate receptors upstream of phospholipase C (PLC). Upregulated Ca(2+) influx activated protein kinase A (PKA) and protein kinase C (PKC) in astrocytes causing hyperphosphorylation of GFAP and vimentin. Hyperphosphorylated (IF) together with RhoA-activated stress fiber formation, disrupted the cytoskeleton leading to altered cell morphology. In neurons, the high intracellular Ca(2+) levels activated the MAPKs, Erk and p38MAPK, beyond PKA and PKC, provoking hyperphosphorylation of NFM, NFH and NFL. CONCLUSIONS: Our findings support that intracellular Ca(2+) is one of the crucial signals that modulate the action of (PhTe)2 in isolated cortical astrocytes and neurons modulating the response of the cytoskeleton against the insult. GENERAL SIGNIFICANCE: Cytoskeletal misregulation is associated with neurodegeneration. This compound could be a valuable tool to induce molecular changes similar to those found in different pathologies of the brain.


Assuntos
Citoesqueleto de Actina/metabolismo , Astrócitos/efeitos dos fármacos , Derivados de Benzeno/farmacologia , Sinalização do Cálcio , Neurônios/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Animais , Astrócitos/metabolismo , Derivados de Benzeno/toxicidade , Células Cultivadas , Neurônios/metabolismo , Compostos Organometálicos/toxicidade , Ratos , Ratos Wistar
8.
J Toxicol Environ Health A ; 80(23-24): 1301-1313, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29020526

RESUMO

Mercury (Hg) is widely distributed in the environment and is known to produce several adverse effects in organisms. The aim of the present study was to examine the in vitro antioxidant activity and Hg chelating ability of the hydroalcoholic extract of Psidium guajava leaves (HEPG). In addition, the potential protective effects of HEPG against Hg(II) were evaluated using a yeast model (Saccharomyces cerevisiae). HEPG was found to exert significant antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl scavenger and inhibition of lipid peroxidation induced by Fe(II) assays in a concentration-dependent manner. The extract also exhibited significant Hg(II) chelating activity. In yeast, Hg(II) induced a significant decrease in cell viability. In contrast, HEPG partially prevented the fall in cell viability induced by Hg(II). In conclusion, HEPG exhibited protective effects against Hg(II)-mediated toxicity, which may be related to both antioxidant and Hg(II)-chelating activities.


Assuntos
Antioxidantes/metabolismo , Quelantes/metabolismo , Mercúrio/metabolismo , Folhas de Planta/química , Psidium/química , Saccharomyces cerevisiae/efeitos dos fármacos , Compostos de Bifenilo/química , Peroxidação de Lipídeos/efeitos dos fármacos , Picratos/química , Extratos Vegetais/química , Saccharomyces cerevisiae/fisiologia
9.
Toxicol Mech Methods ; 27(4): 307-317, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28110610

RESUMO

Methylglyoxal (MG) is a reactive dicarbonyl metabolite originated mainly from glucose degradation pathway that plays an important role in the pathogenesis of diabetes mellitus (DM). Reactions of MG with biological macromolecules (proteins, DNA and lipids) can induce cytotoxicity and apoptosis. Here, human erythrocytes, leukocytes and platelets were acutely exposed to MG at concentration ranging from 0.025 to 10 mM. Afterwards, hemolysis and osmotic fragility in erythrocytes, DNA damage and cell viability in leukocytes, and the activity of purinergic ecto-nucleotidases in platelets were evaluated. The levels of glycated products from leukocytes and free amino groups from erythrocytes and platelets were also measured. MG caused fragility of membrane, hemolysis and depletion of amino groups in erythrocytes. DNA damage, loss of cell viability and increased levels of glycated products were observed in leukocytes. In platelets, MG inhibited the activity of enzymes NTPDase, 5'-nucleotidase and adenosine deaminase (ADA) without affecting the levels of free amino groups. Our findings provide insights for understanding the mechanisms involved in MG acute toxicity towards distinct blood cells.


Assuntos
Plaquetas/efeitos dos fármacos , Dano ao DNA , Eritrócitos/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Aldeído Pirúvico/toxicidade , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Adulto , Plaquetas/enzimologia , Plaquetas/patologia , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Relação Dose-Resposta a Droga , Eritrócitos/enzimologia , Eritrócitos/patologia , Feminino , Hemólise/efeitos dos fármacos , Humanos , Leucócitos/enzimologia , Leucócitos/patologia , Masculino , Fragilidade Osmótica/efeitos dos fármacos
10.
Biometals ; 29(3): 543-50, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27138944

RESUMO

Organoseleno-compounds have been investigated for its beneficial effects against methylmercury toxicity. In this way, diphenyl diselenide (PhSe)2 was demonstrated to decrease Hg accumulation in mice, protect against MeHg-induced mitochondrial dysfunction, and protect against the overall toxicity of this metal. In the present study we aimed to investigate if co-treatment with (PhSe)2 and MeHg could decrease accumulation of Hg in liver slices of rats. Rat liver slices were co-treated with (PhSe)2 (0.5; 5 µM) and/or MeHg (25 µM) for 30 min at 37 °C and Se and Hg levels were measured by inductively coupled plasma mass spectrometry (ICP-MS) in the slices homogenate, P1 fraction, mitochondria and incubation medium. Co-treatment with (PhSe)2 and MeHg did not significantly alter Se levels in any of the samples when compared with compounds alone. In addition, co-treatment with (PhSe)2 and MeHg did not decrease Hg levels in any of the samples tested, although, co-incubation significantly increased Hg levels in homogenate. We suggest here that (PhSe)2 could exert its previously demonstrated protective effects not by reducing MeHg levels, but forming a complex with MeHg avoiding it to bind to critical molecules in cell.


Assuntos
Derivados de Benzeno/farmacologia , Fígado/química , Fígado/efeitos dos fármacos , Mercúrio/análise , Compostos de Metilmercúrio/farmacologia , Compostos Organosselênicos/farmacologia , Selênio/análise , Animais , Derivados de Benzeno/administração & dosagem , Masculino , Espectrometria de Massas , Compostos de Metilmercúrio/administração & dosagem , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Compostos Organosselênicos/administração & dosagem , Ratos , Ratos Wistar
11.
J Neural Transm (Vienna) ; 122(2): 201-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24925686

RESUMO

Diphenyl diselenide (PhSe)2, an organoselenium compound, has been studied as a potential pharmacological agent in different in vitro and in vivo models, mainly due to its antioxidant properties. However, there are few studies concerning the effects of (PhSe)2 on dopaminergic system. Thus, the purpose of the present study was to evaluate the effects of acute and sub-chronic treatment of (PhSe)2 on amphetamine-induced behavioral and biochemical parameters. In acute protocol, mice were pre-treated with 5 or 10 mg/kg of (PhSe)2 and 30 min after, amphetamine was administered. In sub-chronic protocol, mice were pre-treated with 5 or 10 mg/kg of (PhSe)2 during 7 days and 24 h after, amphetamine was administered. Twenty-five minutes after amphetamine administration, behavioral (crossing, rearing, time of stereotypy and immobility) and biochemical (MAO activity, DCFH-DA oxidation, protein and non-protein thiol groups) parameters were analyzed. Amphetamine increased the number of crossing and rearing and (PhSe)2 prevented only the increase in the number of crossings when acutely administered to mice. Furthermore, amphetamine increased stereotypy and time of immobility in mice. (PhSe)2, at 10 mg/kg, increased per se the stereotypy and time of immobility when sub-chronically administered. (PhSe)2, at 10 mg/kg, potentiated the stereotypy caused by amphetamine in both protocols. Sub-chronic treatment with (PhSe)2 either alone (5 and 10 mg/kg) or in combination (10 mg/kg) with amphetamine decreased brain MAO-B activity. Oxidative stress parameters were not modified by (PhSe)2 and/or amphetamine treatments. In conclusion, sub-chronic administration of (PhSe)2 can promote a behavioral sensitization that seems to be, at least in part, dependent of MAO-B inhibition.


Assuntos
Derivados de Benzeno/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Atividade Motora/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Comportamento Estereotipado/efeitos dos fármacos , Anfetamina/farmacologia , Análise de Variância , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Interações Medicamentosas , Modelos Lineares , Camundongos , Monoaminoxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
12.
Molecules ; 20(6): 10095-109, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26039333

RESUMO

In this paper, we report the synthesis and biological evaluation of picolylamide-based diselenides with the aim of developing a new series of diselenides with O···Se non-bonded interactions. The synthesis of diselenides was performed by a simple and efficient synthetic route. All the products were obtained in good yields and their structures were determined by 1H-NMR, 13C-NMR and HRMS. All these new compounds showed promising activities when tested in different antioxidant assays. These amides exhibited strong thiol peroxidase-like (TPx) activity. In fact one of the compounds showed 4.66 times higher potential than the classical standard i.e., diphenyl diselenide. The same compound significantly inhibited iron (Fe)-induced thiobarbituric acid reactive species (TBARS) production in rat's brain homogenate. In addition, the X-ray structure of the most active compound showed non-bonded interaction between the selenium and the oxygen atom that are in close proximity and may be responsible for the increased antioxidant activity. The present study provides evidence about the possible biochemical influence of nonbonding interactions on organochalcogens potency.


Assuntos
Amidas/síntese química , Antioxidantes/síntese química , Compostos Organosselênicos/síntese química , Ácidos Picolínicos/síntese química , Piridinas/síntese química , Amidas/farmacologia , Animais , Antioxidantes/farmacologia , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Misturas Complexas/química , Peroxidação de Lipídeos/efeitos dos fármacos , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Peroxidases/química , Ácidos Picolínicos/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/química
13.
Mol Cell Biochem ; 390(1-2): 1-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623265

RESUMO

Interest in biochemistry of organoselenium compound has increased in the last decades, mainly due to their chemical and biological activities. Here, we investigated the protective effect of diphenyl diselenide (PhSe)2 (5 µmol/kg), in a mouse model of methylmercury (MeHg)-induced brain toxicity. Swiss male mice were divided into four experimental groups: control, (PhSe)2 (5 µmol/kg, subcutaneous administration), MeHg (40 mg/L, in tap water), and MeHg + (PhSe)2. After the treatment (21 days), the animals were killed and the cerebral cortex was analyzed. Electron microscopy indicated an enlarged and fused mitochondria leading to a reduced number of organelles, in the MeHg-exposed mice. Furthermore, cortical creatine kinase activity, a sensitive mitochondrial oxidative stress sensor, was almost abolished by MeHg. Subcutaneous (PhSe)2 co-treatment rescued from MeHg-induced mitochondrial alterations. (PhSe)2 also behaved as an enhancer of mitochondrial biogenesis, by increasing cortical mitochondria content in mouse-receiving (PhSe)2 alone. Mechanistically, (PhSe)2 (1 µM; 24 h) would trigger the cytoprotective Nrf-2 pathway for activating target genes, since astroglial cells exposed to the chalcogen showed increased content of hemeoxygenase type 1, a sensitive marker of the activation of this via. Thus, it is proposed that the (PhSe)2-neuroprotective effect might be linked to its mitoprotective activity.


Assuntos
Derivados de Benzeno/administração & dosagem , Encéfalo/metabolismo , Heme Oxigenase-1/biossíntese , Mitocôndrias/metabolismo , Compostos Organosselênicos/administração & dosagem , Animais , Encéfalo/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Masculino , Intoxicação do Sistema Nervoso por Mercúrio/metabolismo , Intoxicação do Sistema Nervoso por Mercúrio/patologia , Compostos de Metilmercúrio/toxicidade , Camundongos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
14.
Mol Cell Biochem ; 388(1-2): 277-86, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24370728

RESUMO

Diabetes mellitus (DM) is associated with brain alterations that may contribute to cognitive dysfunctions. Chlorogenic acid (CGA) and caffeine (CA), abundant in coffee (CF), are natural compounds that have showed important actions in the brain. The present study aimed to evaluate the effect of CGA, CA, and CF on acetylcholinesterase (AChE), Na(+), K(+)-ATPase, aminolevulinate dehydratase (δ-ALA-D) activities and TBARS levels from cerebral cortex, as well as memory and anxiety in streptozotocin-induced diabetic rats. Animals were divided into eight groups (n = 5-10): control; control/CGA 5 mg/kg; control/CA 15 mg/kg; control/CF 0.5 g/kg; diabetic; diabetic/CGA 5 mg/kg; diabetic/CA 15 mg/kg; and diabetic/CF 0.5 g/kg. Our results demonstrated an increase in AChE activity and TBARS levels in cerebral cortex, while δ-ALA-D and Na(+), K(+)-ATPase activities were decreased in the diabetic rats when compared to control water group. Furthermore, a memory deficit and an increase in anxiety in diabetic rats were observed. The treatment with CGA and CA prevented the increase in AChE activity in diabetic rats when compared to the diabetic water group. CGA, CA, and CF intake partially prevented cerebral δ-ALA-D and Na(+), K(+)-ATPase activity decrease due to diabetes. Moreover, CGA prevented diabetes-induced TBARS production, improved memory, and decreased anxiety. In conclusion, among the compounds studied CGA proved to be a compound which acts better in the prevention of brain disorders promoted by DM.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cafeína/farmacologia , Ácido Clorogênico/farmacologia , Café , Diabetes Mellitus Experimental/tratamento farmacológico , Acetilcolinesterase/biossíntese , Animais , Ansiedade/tratamento farmacológico , Peso Corporal/efeitos dos fármacos , Córtex Cerebral/metabolismo , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Sintase do Porfobilinogênio/biossíntese , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/biossíntese , Estreptozocina , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
15.
Exp Parasitol ; 144: 39-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24950380

RESUMO

The aim of this study was to evaluate the effects of selenium and copper on oxidative stress and its performance in lambs experimentally infected with Haemonchus contortus. Twenty-eight five-months old lambs were experimentally infected by the oral route with 5000 third-stage infective larvae and allocated into four groups, i.e., untreated animals, animals treated intramuscularly with sodium selenite (0.2 mg kg(-1)), animals treated subcutaneously with copper (3.5 mg kg(-1)), and animals treated with sodium selenite (IM; 0.2 mg kg(-1)) and copper (SC; 3.5 mg kg(-1)). These animals received oat hay (Avena sativa) and commercial concentrate, totaling 15% of crude protein, 30% being derived from oat hay and 70% of the concentrate. Lipid peroxidation, antioxidant enzymes, eggs per gram of feces (EPG) and body weight were assessed on the day of infection and after 20, 40, 60 and 80 days post-infection. The number of H. contortus adults was assessed at the end of the experiment. The selenium associated or not with copper reduced the effects of oxidative stress caused by infection. The groups supplemented with copper had increased body weight, and the combination of these two minerals reduced the EPG and number of H. contortus adults in lambs. The use of selenium associated with copper may help the control of infection by H. contortus.


Assuntos
Antioxidantes/administração & dosagem , Cobre/administração & dosagem , Hemoncose/veterinária , Ácido Selênico/administração & dosagem , Doenças dos Ovinos/prevenção & controle , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Catalase/sangue , Cobre/farmacologia , Cobre/uso terapêutico , Fezes/parasitologia , Glutationa Peroxidase/sangue , Hemoncose/tratamento farmacológico , Hemoncose/imunologia , Hemoncose/prevenção & controle , Hematócrito/veterinária , Imunocompetência/efeitos dos fármacos , Injeções Intramusculares/veterinária , Injeções Subcutâneas/veterinária , Peroxidação de Lipídeos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Contagem de Ovos de Parasitas/veterinária , Ácido Selênico/farmacologia , Ácido Selênico/uso terapêutico , Ovinos , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/imunologia , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Aumento de Peso
16.
Curr Neuropharmacol ; 12(2): 120-39, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24669207

RESUMO

Oxidative stress caused by reactive species, including reactive oxygen species, reactive nitrogen species, and unbound, adventitious metal ions (e.g., iron [Fe] and copper [Cu]), is an underlying cause of various neurodegenerative diseases. These reactive species are an inevitable by-product of cellular respiration or other metabolic processes that may cause the oxidation of lipids, nucleic acids, and proteins. Oxidative stress has recently been implicated in depression and anxiety-related disorders. Furthermore, the manifestation of anxiety in numerous psychiatric disorders, such as generalized anxiety disorder, depressive disorder, panic disorder, phobia, obsessive-compulsive disorder, and posttraumatic stress disorder, highlights the importance of studying the underlying biology of these disorders to gain a better understanding of the disease and to identify common biomarkers for these disorders. Most recently, the expression of glutathione reductase 1 and glyoxalase 1, which are genes involved in antioxidative metabolism, were reported to be correlated with anxiety-related phenotypes. This review focuses on direct and indirect evidence of the potential involvement of oxidative stress in the genesis of anxiety and discusses different opinions that exist in this field. Antioxidant therapeutic strategies are also discussed, highlighting the importance of oxidative stress in the etiology, incidence, progression, and prevention of psychiatric disorders.

17.
Mol Neurobiol ; 61(3): 1225-1236, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37698834

RESUMO

Type 2 diabetes mellitus (T2DM) has been shown to affect a series of cognitive processes including memory, increasing the risk for dementia, particularly Alzheimer's disease (AD). Although increasing evidence has supported that both diseases share common features, the pathophysiological mechanisms connecting these two disorders remain to be fully elucidated. Herein, we used Drosophila melanogaster fed on a high-sugar diet (HSD) to mimic T2DM, and investigate its effects on memory as well as identify potential molecular players associated with the memory deficits induced by HSD. Flies hatched from and reared on HSD for 7 days had a substantial decrease in short-term memory (STM). The screening for memory-related genes using transcriptome data revealed that HSD altered the expression of 33% of memory genes in relation to the control. Among the differentially expressed genes (DEGs) with a fold change (FC) higher than two, we found five genes, related to synapse and memory trace formation, that could be considered strong candidates to underlie the STM deficits in HSD flies: Abl tyrosine kinase (Abl), bruchpilot (Brp), minibrain (Mnb), shaker (Sh), and gilgamesh (Gish). We also analyzed genes from the dopamine system, one of the most relevant signaling pathways for olfactory memory. Interestingly, the flies fed on HSD presented a decreased expression of the Tyrosine hydroxylase (Ple) and Dopa decarboxylase (Ddc) genes, signals of a possible dopamine deficiency. In this work, we present promising biomarkers to investigate molecular networks shared between T2DM and AD.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Animais , Drosophila melanogaster/metabolismo , Dopamina/metabolismo , Transtornos da Memória/genética , Dieta , Açúcares/metabolismo , Açúcares/farmacologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-38237841

RESUMO

Anxiety is among the most prevalent mental disorders present in the general population. Benzodiazepines are the most commonly prescribed drugs for the treatment of anxiety. Using zebrafish as a model organism, we investigated the anxiolytic activity of JM-20, a novel hybrid molecule with a 1,5-benzodiazepine ring fused to a dihydropyridine moiety. Firstly, we carried out some assays to analyze the possible toxicity mediated by JM-20. For this, zebrafish were exposed to different JM-20 concentrations (0-5 µM) for 96 h. Then, using the novel tank test, we evaluated both locomotor and anxiety-like behavior of the animals. Furthermore, brain, liver and plasma were removed to assess toxicity parameters. JM-20 exposure did not cause changes on novel tank, and also did not alter brain viability, hepatic LDH and plasma ALT levels. Afterward, we investigated whether a pre-exposure to JM-20 would prevent the anxiogenic effect evoked by caffeine. In the novel tank test, caffeine significantly decreased the time spent at the top, as well as the number of transitions to the top area. Moreover, caffeine decreased both the total and average time spent in the lit area, as well as increased the number of risk episodes evaluated by the light-dark test. Whole-body cortisol levels were also increased by caffeine exposure. Interestingly, pre-treatment with JM-20 abolished all alterations induced by caffeine. The anxiolytic effect profile of JM-20 was similar to those found for diazepam (positive control). Our findings show, for the first time, the anxiolytic effect of JM-20 in zebrafish, and its relationship with cortisol regulation.


Assuntos
Ansiolíticos , Humanos , Animais , Ansiolíticos/farmacologia , Cafeína/toxicidade , Peixe-Zebra/fisiologia , Hidrocortisona/farmacologia , Comportamento Animal , Fenótipo
19.
Fundam Clin Pharmacol ; : e13007, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738393

RESUMO

Candida spp. is an opportunistic pathogen capable of causing superficial to invasive infections. Morphological transition is one of the main virulence factors of this genus and, therefore, is an important variable to be considered in pharmacological interventions. Riparins I, II, III, and IV are alkamide-type alkaloids extracted from the unripe fruit of Aniba riparia, whose remarkable pharmacological properties were previously demonstrated. This work aimed to evaluate in silico and in vitro the inhibitory effects of Riparins on the morphological transition of Candida albicans, Candida tropicalis, and Candida krusei. Molecular docking was applied to analyze the inhibitory effects of riparins against proteins such as N-acetylglucosamine, CYP-51, and protein kinase A (PKA) using the Ramachandran plot. The ligands were prepared by MarvinSketch and Spartan software version 14.0, and MolDock Score and Rerank Score were used to analyze the affinity of the compounds. In vitro analyses were performed by culturing the strains in humid chambers in the presence of riparins or fluconazole (FCZ). The morphology was observed through optical microscopy, and the size of the hyphae was determined using the ToupView software. In silico analysis demonstrated that all riparins are likely to interact with the molecular targets: GlcNAc (>50%), PKA (>60%), and CYP-51 (>70%). Accordingly, in vitro analysis showed that these compounds significantly inhibited the morphological transition of all Candida strains. In conclusion, this study demonstrated that riparins inhibit Candida morphological transition and, therefore, can be used to overcome the pathogenicity of this genus.

20.
Neurochem Res ; 38(10): 2028-36, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23881289

RESUMO

Recent studies have indicated a causal link between high dietary cholesterol intake and brain oxidative stress. In particular, we have previously shown a positive correlation between elevated plasma cholesterol levels, cortico-cerebral oxidative stress and mitochondrial dysfunction in low density lipoprotein receptor knockout (LDLr(-/-)) mice, a mouse model of familial hypercholesterolemia. Here we show that the organoselenium compound diphenyl diselenide (PhSe)2 (1 mg/kg; o.g., once a day for 30 days) significantly blunted the cortico-cerebral oxidative stress and mitochondrial dysfunction induced by a hypercholesterolemic diet in LDLr(-/-) mice. (PhSe)2 effectively prevented the inhibition of complex I and II activities, significantly increased the reduced glutathione (GSH) content and reduced lipoperoxidation in the cerebral cortex of hypercholesterolemic LDLr(-/-) mice. Overall, (PhSe)2 may be a promising molecule to protect against hypercholesterolemia-induced effects on the central nervous system, in addition to its already demonstrated antiatherogenic effects.


Assuntos
Derivados de Benzeno/uso terapêutico , Córtex Cerebral/metabolismo , Hipercolesterolemia/fisiopatologia , Doenças Mitocondriais/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Compostos Organosselênicos/uso terapêutico , Receptores de LDL/deficiência , Animais , Encéfalo/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Colesterol/sangue , Colesterol na Dieta/administração & dosagem , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA