Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(5): 1217-1227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180497

RESUMO

Thin films of conjugated polymer and enzyme can be used to unravel the interaction between components in a biosensor. Using artificial neural networks (ANNs) improves data interpretability and helps construct models with great capacity for classifying and processing information. The present work used kinetic data from the catalytic activity of urease immobilized in different conjugated polymers to create ANN models using time, substrate concentration, and absorbance as input variables since the models had absorbance in a posterior instant as output value to explore the predictivity of the ANNs. The performance of the models was evaluated by Pearson's correlation coefficient (ρ) and mean squared error (MSE) values. After the learning process, a series of new experiments were performed to verify the generality of the models. As the main results, the best ANN model presented 0.9980 and 3.0736 × 10-5 for ρ and MSE, respectively. For the simulation step, intermediary values of substrate concentration were used. The mean absolute percentage error (MAPE) values were 3.34, 3.07, and 3.78 for 12 mM, 22 mM, and 32 mM concentrations, respectively. Overall, with the simulations, it was possible to ascertain the interpolatory capacity of the model, which has a learning mechanism based on absorbance and time as variables. Thus, the potential of ANNs would be in their use in pre-evaluations, helping to determine the substrate concentration at which there is higher catalytic activity or in determining the linear range of the sensor.


Assuntos
Técnicas Biossensoriais , Urease , Redes Neurais de Computação , Simulação por Computador , Aprendizagem
2.
Langmuir ; 36(35): 10587-10596, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32786889

RESUMO

In this work, the copolymer poly[(9,9-dioctylfluorene)-co-(3-hexylthiophene)] was employed as a matrix for immobilizing phytase, aiming at the detection of phytic acid. The copolymer was spread on the air-water interface forming Langmuir monolayers and phytase adsorbed from the aqueous subphase. The interactions between the copolymer and the enzyme components were investigated with surface pressure and surface potential-area isotherms, Brewster angle microscopy, and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The enzyme could be incorporated in the monolayers from the aqueous subphase, expanding the copolymer films and maintaining its secondary structure. The polymeric films presented a morphological heterogeneous pattern at the air-water interface because of the ability of their chains to fold and entangle, causing inherent defects in the organization as well as unbalanced lateral distribution at the air-water interface because of the formation of aggregates. The interfacial films were transferred to solid supports as Langmuir-Blodgett films and characterized by PM-IRRAS and scanning electronic microscopy, which showed not only the co-transfer of the enzyme but also the maintenance of their heterogeneous morphological pattern. The enzymatic activity of the blended film was analyzed by UV-vis spectroscopy and allowed the estimation of the value of the Michaelis constant (13.08 mM), demonstrating the feasibility of the system to selectively detect phytic acid for biosensing purposes.

3.
Adv Colloid Interface Sci ; 285: 102277, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32992077

RESUMO

Initially developed for classic systems composed of fatty acids and phospholipids, the Langmuir and Langmuir-Blodgett (LB) techniques allow the fabrication of nanometer-scale devices at self-assembly interfaces with high control over the thickness and molecular architecture. Their application in the research and production of new plastic materials has grown considerably over the past few decades due to the efficiency of conjugated polymers (CPs) for the production of light-emitting diodes, flexible displays, solar cells, and other photoelectronic devices. The structuring of polymers at different interfaces is not trivial as this class of macromolecules can undergo through different processes of folding/unfolding, which hinders the formation of stable Langmuir monolayers and, consequently, the production of Langmuir-Blodgett films. With these ideas in mind, the present article aims to review a series of elements related to the formation of stable Langmuir and Langmuir-Blodgett films of CPs, especially those based on poly(phenylene vinylene)s, polyfluorenes, and polythiophenes. This review is divided into two parts where we first discuss the formation of neat CP films, and then the strategies for the formation of stable CP films based on the co-immobilization with fatty acids, other polymers, and enzymes as mixed films.


Assuntos
Nanoestruturas/química , Nanotecnologia/instrumentação , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA