Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Infect Dis ; 7(4): 759-776, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33689276

RESUMO

Antimalarial drugs with novel modes of action and wide therapeutic potential are needed to pave the way for malaria eradication. Violacein is a natural compound known for its biological activity against cancer cells and several pathogens, including the malaria parasite, Plasmodium falciparum (Pf). Herein, using chemical genomic profiling (CGP), we found that violacein affects protein homeostasis. Mechanistically, violacein binds Pf chaperones, PfHsp90 and PfHsp70-1, compromising the latter's ATPase and chaperone activities. Additionally, violacein-treated parasites exhibited increased protein unfolding and proteasomal degradation. The uncoupling of the parasite stress response reflects the multistage growth inhibitory effect promoted by violacein. Despite evidence of proteotoxic stress, violacein did not inhibit global protein synthesis via UPR activation-a process that is highly dependent on chaperones, in agreement with the notion of a violacein-induced proteostasis collapse. Our data highlight the importance of a functioning chaperone-proteasome system for parasite development and differentiation. Thus, a violacein-like small molecule might provide a good scaffold for development of a novel probe for examining the molecular chaperone network and/or antiplasmodial drug design.


Assuntos
Antimaláricos , Antimaláricos/farmacologia , Indóis/farmacologia , Chaperonas Moleculares , Plasmodium falciparum
2.
J Parasitol ; 102(3): 349-55, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26959813

RESUMO

Amphibian and reptile lungs are frequently infected with Rhabdias parasites, and this condition ultimately leads to reduced survival, performance, and growth because of granulomatous inflammation, nodule formation, and nematodal pneumonia onset. Here we investigate the histopathological features of naturally infected Rhinella marina by the lung nematode Rhabdias paraensis. A total of 10 host animals were captured in peridomiciliar areas in the eastern Brazilian Amazon, and anatomic-histological analyses were performed on both the infected and non-infected lungs of these amphibians. Helminths were usually found within the secondary and primary septa of infected lungs whereas parasites were not detected within vessels or adhering to tissues. In addition, we observed discrete erythrocytes, diapedesis foci, few granulocytes and erythrocytes in the interseptal spaces, discrete cell infiltration, and a small number of melanomacrophages, and no granulomas or cysts were observed. New aspects related to changes in tissue and helminth-host interactions are discussed for the relationship of R. paraensis × Rhi. marina from the Amazon region.


Assuntos
Bufo marinus/parasitologia , Pneumopatias Parasitárias/veterinária , Infecções por Rhabditida/veterinária , Rhabditoidea , Animais , Brasil , Bufo marinus/anatomia & histologia , Interações Hospedeiro-Parasita , Pulmão/anatomia & histologia , Pulmão/parasitologia , Pulmão/patologia , Pneumopatias Parasitárias/parasitologia , Pneumopatias Parasitárias/patologia , Infecções por Rhabditida/parasitologia , Infecções por Rhabditida/patologia , Rhabditoidea/isolamento & purificação , Traqueia/anatomia & histologia , Traqueia/parasitologia , Traqueia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA