Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 340: 139831, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37607598

RESUMO

The objective of this work was to evaluate elemental changes in pepper exposed to Cd stress through different chemometric tools. For this purpose, pepper plants were grown under five different treatments with different Cd concentrations in the nutrient solution. Considering the hypothesis that pepper plants exposed to Cd stress during growth undergo changes in the macro- and microelemental distribution in leaves, stems, and roots, principal component analysis (PCA) and parallel factor (PARAFAC) analysis were applied to compare bidirectional and multivariate chemometric strategies to assess elemental changes in pepper plants. Since the number of variables and the data generated were large and complex, the application of chemometric tools was justified to facilitate the visualization and interpretation of results. The mineral composition, namely the Ca, Cd, Cu, Fe, K, Mg, Mn, N, and P contents, was assessed in 180 samples of leaves, stems, and roots of the cultivated peppers. Then, PCA and PARAFAC analysis were applied to compare bidirectional and multivariate chemometric strategies to assess elemental changes throughout pepper plants. The visualization of the trend on each sample and their intrinsic relationship with the variables were possible with the application of PCA. The use of PARAFAC analysis permitted the simultaneous study of all samples in a straightforward representation of the information that facilitated a quick and comprehensive understanding of the spatial distribution of elements in plants. Thus, macroelements (Ca, K, Mg, N, and P) that were found in higher concentrations in leaves did not present significant differences in the distribution along the plants under different treatment conditions. In contrast, a significant impact on the microelement (Cu, Fe, and Mn) distribution was produced between uncontaminated and contaminated samples. This analysis revealed a significant accumulation of Cd in roots and adverse effects on normal plant growth, demonstrating their level of phytotoxicity to pepper.


Assuntos
Cádmio , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Cádmio/toxicidade , Quimiometria , Alimentos , Nutrientes
2.
Food Chem ; 367: 130682, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364147

RESUMO

Basil is an edible, aromatic plant, which makes the study of the ecotoxicity of metals in plant metabolism relevant. Given the above, the objective of this study was to evaluate the effects of metals, aluminum, lead, and cadmium, in the synthesis of phenolic compounds and in the dry mass of basil plants (O. basilicum L.) grown in a hydroponic system. The plants were subjected to four different concentrations of cadmium (0.2, 0.6, 1.2, and 1.8 mmol L-1), lead and aluminum (0.04, 0.08, 0.12, and 0.16 mmol L-1), and compared with the control. After desiccation of the plant material, the total dry mass was obtained and then, hydroethanolic extracts (43% distilled water and 57% ethanol) were made for biochemical analyzes, which consisted of the determination of caffeic acid (CA) and rosmarinic acid (RA) by high performance liquid chromatography analysis with a diode detector (HPLC-DAD); total phenolics (TP) and total flavonoids (TF) by spectrophotometry. The data were submitted to analysis of variance and multivariate analysis (principal component analysis-PCA and hierarchical cluster analysis-HCA) was applied for data association. The phenolic compounds showed a high positive correlation with each other, and the total dry mass showed low and negative correlations with the analyzed variables. The results showed that the metals aluminum, lead, and cadmium promoted a stress condition in basil plants, which resulted in the reduction of the dry matter mass and an increase in the synthesis of phenolic compounds, according to the type and concentration of the metal.


Assuntos
Ocimum basilicum , Antioxidantes , Cádmio , Ácidos Cafeicos , Cinamatos , Depsídeos , Flavonoides , Chumbo , Análise Multivariada , Ácido Rosmarínico
3.
Environ Sci Pollut Res Int ; 28(5): 5598-5608, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32974821

RESUMO

The present work aimed to analyze the mineral nutrition of Physalis angulata L. under stress by aluminum in the nutrient solution. The treatments consisted of five different concentrations of aluminum in the nutrient solution (0, 0.04, 0.08, 0.12, and 0.16 mmol L-1) in the AlCl3 form. The plants were exposed to Al for 30 days. Subsequently, nutritional and aluminum analyses were performed on plant tissue. The data were submitted to analysis of variance (p < 0.05), and, in case of significance, the regression study was performed as well as hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used. The formation of four groups occurred, where we can observe the similarity and differences in the treatments between them. The separation of the treatments into groups reflected the heterogeneity of the treatments about the aluminum levels in the nutrient solution, evidencing its phytotoxicity level in Physalis angulata plants. Among the analyzed variables, P, K, Ca, Mg, Fe, Mo, and Zn were the most influential ones demonstrated by principal component analysis (PCA). The stress of 0.16 mmol L-1 of Al increased the phosphorus contents in the stems and roots and the potassium, copper, and molybdenum contents in all parts of the plants. In contrast, Al reduced the levels of calcium, magnesium, iron, and zinc in P. angulata plants. Iron being the micronutrient that showed the largest reduction, followed by zinc in the leaves. The highest levels of aluminum were found in the roots.


Assuntos
Physalis , Alumínio , Micro-Ondas , Plasma , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA