RESUMO
Metalliferous mining, a major source of metals and metalloids, has severe potential environmental impacts. However, the number of papers published in international peer-reviewed journals seems to be low regarding its effects in terrestrial wildlife. To the best of our knowledge, our review is the first on this topic. We used 186 studies published in scientific journals concerning metalliferous mining or mining spill pollution and their effects on terrestrial and semi-terrestrial vertebrates. We identified the working status of the mine complexes studied, the different biomarkers of exposure and effect used, and the studied taxa. Most studies (128) were developed in former mine sites and 46 in active mining areas. Additionally, although several mining accidents have occurred throughout the world, all papers about effects on terrestrial vertebrates from mining spillages were from Aznalcóllar (Spain). We also observed a lack of studies in some countries with a prominent mining industry. Despite >50% of the studies used some biomarker of effect, 42% of them only assessed exposure by measuring metal content in internal tissues or by non-invasive sampling, without considering the effect in their populations. Most studied species were birds and small mammals, with a negligible representation of reptiles and amphibians. The information gathered in this review could be helpful for future studies and protocols on the topic and it facilitates a database with valuable information on risk assessment of metalliferous mining pollution.
Assuntos
Poluição Ambiental , Mineração , Animais , Aves , Monitoramento Ambiental , Metais/toxicidade , VertebradosRESUMO
Mining is responsible of releasing trace elements to the environment with potential negative effects on wildlife. Traditionally, wildlife exposure assessment has been developed by analyzing mainly environmental compartments or internal tissues. Nowadays, the use of non-destructive matrices such as hair or feathers has increased. Nevertheless, its use in free-living terrestrial mammals or in birds other than raptors or passerines is less frequent. The main objective of our study was to determine the potential for hair and feathers in a rabbit and bird species to be used as non-invasive proxy tissues for assessing internal metal concentrations at polluted sites from mining. We tested whether hair of European rabbit (Oryctolagus cuniculus) and feathers of red-legged partridge (Alectoris rufa) can be used as non-destructive biological monitoring tools of both essential (Cu, Zn) and non-essential (Pb, Cd, As) trace elements in a currently active copper mining site. We found significant different concentrations, particularly in non-essential elements, between reference area and mining site. Non-essential elements Pb and Cd showed higher correlations between tissues and hair/feathers, while few significant patterns were observed for essential elements such as Cu and Zn. Although feathers showed lower levels of correlation with internal tissues than hair, both could be useful as non-destructive biological monitoring tools. Further tissues, and more importantly, hair and feathers allowed discrimination between polluted and reference sites to indicate bioavailability and pollution status. In addition, hair and feathers can be used in monitoring pollution of an active mining site, being specially interesting for biomonitoring a certain period of time in the event of a particular episode of pollution, in addition to the chronic exposure. As occurred with hair in rabbits, feathers seem to be a good compartment to detect differences between a potential polluted area, such the surrounding of an active mine site, and a non-polluted area.
Assuntos
Plumas/química , Metais Pesados/análise , Animais , Monitoramento Ambiental , Poluição Ambiental/análise , Ferro , Mineração , Coelhos , SulfetosRESUMO
Animal-vehicle collisions have become a serious traffic safety issue. Collisions have steadily increased over the last few decades, as have their associated socio-economic costs. Here, we explore the spatial and temporal patterns of animal-vehicle collisions reported to authorities in the province of Seville, southern Spain. Most animal-vehicle collisions involved domestic animals (>95%), particularly dogs (>80%), a pattern that sharply contrasts with that found in other Spanish and European regions, where collisions are mostly caused by game species. Dog-vehicle collisions were related to the traffic intensity of the roads and they were more frequent around dawn and dusk, coinciding with the peaks of activity of dogs. This pattern was consistent throughout the week, although on weekends there were fewer collisions due to lower traffic density at those times. These findings suggest that the aggregation of dog-vehicle collisions around twilight likely resulted from a combined effect of the activity peaks of dogs and traffic density. Seasonally, collisions increased in autumn and winter, coinciding with the period of intense hunting activity in the region. Further, during autumn and winter, rush hour partly overlaps with twilight due to longer nights in comparison with summer and spring, which may contribute to the increased rate of dog-vehicle collisions in these seasons. Spatially, satellite images of nighttime lights showed that dog-vehicle collisions were clustered near urban areas. Overall, the high incidence of stray dogs involved in animal-vehicle collisions highlights a road safety issue with this type of animals in the region.
Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Cães , Animais , Animais Selvagens , Fatores de Risco , Estações do Ano , EspanhaRESUMO
BACKGROUND: Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. METHODOLOGY/PRINCIPAL FINDINGS: As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. CONCLUSIONS: Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.
Assuntos
Agricultura , Movimentos do Ar , Aves , Modelos Teóricos , Animais , Causas de Morte , Conservação dos Recursos Naturais , Humanos , Espanha , VentoRESUMO
BACKGROUND: Island faunas have played central roles in the development of evolutionary biology and ecology. Birds are among the most studied organisms on islands, in part because of their dispersal powers linked to migration. Even so, we lack of information about differences in the movement ecology of island versus mainland populations of birds. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a new general pattern indicating that large birds with deferred sexual maturity are sedentary on islands, and that they become so even when they are migratory on the mainland. Density-dependent variation in the age at first breeding affects the survivorship of insular populations and this, in turn, affects the movement ecology of large birds. Because density-dependent variation in the age of first breeding is critical to the long-term survival of small isolated populations of long-lived species, migratory forms can successfully colonize islands only if they become sedentary once there. Analyses of the movement ecology of continental and insular populations of 314 species of raptors, 113 species of Ciconiiformes and 136 species of passerines, along with individual-based population simulations confirm this prediction. CONCLUSIONS: This finding has several consequences for speciation, colonization and survival of small isolated population of species with deferred sexual maturity.