Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Orig Life Evol Biosph ; 47(2): 169-185, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27025932

RESUMO

Biofilm-forming microbial communities are known as the most robust assemblages that can survive in harsh environments. Biofilm-associated microorganisms display greatly increased resistance to physical and chemical adverse conditions, and they are expected to be the first form of life on Earth or anywhere else. Biological molecules synthesized by biofilm -protected microbiomes may serve as markers of the nucleoprotein life. We offer a new experimental model, a kombucha multimicrobial culture (KMC), to assess a structural integrity of a widespread microbial polymer - cellulose - as a biosignature of bacteria-producers for the multipurpose international project "BIOlogical and Mars Experiment (BIOMEX)", which aims to study the vitality of pro- and eukaryotic organisms and the stability of organic biomolecules in contact with minerals to analyze the detectability of life markers in the context of a planetary background. In this study, we aimed to substantiate the detectability of mineralized cellulose with spectroscopy and to study the KMC macrocolony phenotype stability under adverse conditions (UV, excess of inorganics etc.). Cellulose matrix of the KMC macrocolony has been mineralized in the mineral-water interface under assistance of KMC-members. Effect of bioleached ions on the cellulose matrix has been visible, and the FT-IR spectrum proved changes in cellulose structure. However, the specific cellulose band vibration, confirming the presence of ß(1,4)-linkages between monomers, has not been quenched by secondary minerals formed on the surface of pellicle. The cellulose-based KMC macrocolony phenotype was in a dependence on extracellular matrix components (ionome, viriome, extracellular membrane vesicles), which provided its integrity and rigidness in a certain extent under impact of stressful factors.


Assuntos
Bactérias , Biofilmes , Microbiota , Celulose , Meio Ambiente Extraterreno , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Orig Life Evol Biosph ; 43(6): 501-26, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24362711

RESUMO

Lichens, which are symbioses of a fungus and one or two photoautotrophs, frequently tolerate extreme environmental conditions. This makes them valuable model systems in astrobiological research to fathom the limits and limitations of eukaryotic symbioses. Various studies demonstrated the high resistance of selected extremotolerant lichens towards extreme, non-terrestrial abiotic factors including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. This study focusses on the diverse set of secondary lichen compounds (SLCs) that act as photo- and UVR-protective substances. Five lichen species used in present-day astrobiological research were compared: Buellia frigida, Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, and Pleopsidium chlorophanum. Detailed investigation of secondary substances including photosynthetic pigments was performed for whole lichen thalli but also for axenically cultivated mycobionts and photobionts by methods of UV/VIS-spectrophotometry and two types of high performance liquid chromatography (HPLC). Additionally, a set of chemical tests is presented to confirm the formation of melanic compounds in lichen and mycobiont samples. All investigated lichens reveal various sets of SLCs, except C. gyrosa where only melanin was putatively identified. Such studies will help to assess the contribution of SLCs on lichen extremotolerance, to understand the adaptation of lichens to prevalent abiotic stressors of the respective habitat, and to form a basis for interpreting recent and future astrobiological experiments. As most of the identified SLCs demonstrated a high capacity in absorbing UVR, they may also explain the high resistance of lichens towards non-terrestrial UVR.


Assuntos
Adaptação Biológica/efeitos da radiação , Líquens/metabolismo , Raios Ultravioleta , Adaptação Biológica/fisiologia , Especificidade da Espécie
3.
Orig Life Evol Biosph ; 43(3): 283-303, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23868319

RESUMO

Lichens are symbioses of two organisms, a fungal mycobiont and a photoautotrophic photobiont. In nature, many lichens tolerate extreme environmental conditions and thus became valuable models in astrobiological research to fathom biological resistance towards non-terrestrial conditions; including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. All studies demonstrated the high resistance towards non-terrestrial abiotic factors of selected extremotolerant lichens. Besides other adaptations, this study focuses on the morphological and anatomical traits by comparing five lichen species-Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, Buellia frigida, Pleopsidium chlorophanum-used in present-day astrobiological research. Detailed investigation of thallus organization by microscopy methods allows to study the effect of morphology on lichen resistance and forms a basis for interpreting data of recent and future experiments. All investigated lichens reveal a common heteromerous thallus structure but diverging sets of morphological-anatomical traits, as intra-/extra-thalline mucilage matrices, cortices, algal arrangements, and hyphal strands. In B. frigida, R. geographicum, and X. elegans the combination of pigmented cortex, algal arrangement, and mucilage seems to enhance resistance, while subcortex and algal clustering seem to be crucial in C. gyrosa, as well as pigmented cortices and basal thallus protrusions in P. chlorophanum. Thus, generalizations on morphologically conferred resistance have to be avoided. Such differences might reflect the diverging evolutionary histories and are advantageous by adapting lichens to prevalent abiotic stressors. The peculiar lichen morphology demonstrates its remarkable stake in resisting extreme terrestrial conditions and may explain the high resistance of lichens found in astrobiological research.


Assuntos
Ascomicetos/fisiologia , Ascomicetos/ultraestrutura , Líquens/fisiologia , Líquens/ultraestrutura , Adaptação Fisiológica , Exobiologia , Microscopia Eletrônica de Varredura , Simbiose
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123073, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37453382

RESUMO

The main objective of the ongoing and future space exploration missions is the search for traces of extant or extinct life (biomarkers) on Mars. One of the main limiting factors on the survival of Earth-like life is the presence of harmful space radiation, that could damage or modify also biomolecules, therefore understanding the effects of radiation on terrestrial biomolecules stability and detectability is of utmost importance. Which terrestrial molecules could be preserved in a Martian radiation scenario? Here, we investigated the potential endurance of fungal biomolecules, by exposing de-hydrated colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus mixed with Antarctic sandstone and with two Martian regolith analogues to increasing doses (0, 250 and 1000 Gy) of accelerated ions, namely iron (Fe), argon (Ar) and helium (He) ions. We analyzed the feasibility to detect fungal compounds with Raman and Infrared spectroscopies after exposure to these space-relevant radiations.


Assuntos
Íons Pesados , Marte , Voo Espacial , Meio Ambiente Extraterreno , Análise Espectral , Regiões Antárticas , Exobiologia
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120046, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34139661

RESUMO

The extremophile lichen Circinaria gyrosa (C. gyrosa) is one of the selected species within the BIOMEX (Biology and Mars Experiment) experiment. Here we present the Raman study of a biohint found in this lichen, called whewellite (calcium oxalate monohydrate), and other organic compounds and mineral products of the biological activity of the astrobiologically relevant model system C. gyrosa. Samples were exposed to space- and simulated Mars-like conditions during the EXPOSE-R2 mission parallel ground reference experiment MGR performed at the space- and planetary chambers of DLR-Cologne to study Mars' habitability and resistance to real space conditions. In this work, we complete the information of natural C. gyrosa about the process of diagenesis by the identification of carbonate crystals in the inner medulla together with the biomineral whewellite. The analysis by Raman spectroscopy of simulated Space and Mars exposed samples confirm alterations and damages of the photobiont part of the lichen and changes related to the molecular structure of whewellite. The conclusions of this work will be important to understand what are the effects to consider when biological systems are exposed to space or Mars-like conditions and to expand our knowledge of how life survives in most extreme conditions that is a prerequisite in future planetary exploration projects.


Assuntos
Líquens , Voo Espacial , Ascomicetos , Exobiologia , Meio Ambiente Extraterreno , Análise Espectral Raman
6.
Stud Mycol ; 61: 99-109, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19287532

RESUMO

Dried colonies of the Antarctic rock-inhabiting meristematic fungi Cryomyces antarcticus CCFEE 515, CCFEE 534 and C. minteri CCFEE 5187, as well as fragments of rocks colonized by the Antarctic cryptoendolithic community, were exposed to a set of ground-based experiment verification tests (EVTs) at the German Aerospace Center (DLR, Köln, Germany). These were carried out to test the tolerance of these organisms in view of their possible exposure to space conditions outside of the International Space Station (ISS). Tests included single or combined simulated space and Martian conditions. Responses were analysed both by cultural and microscopic methods. Thereby, colony formation capacities were measured and the cellular viability was assessed using live/dead dyes FUN 1 and SYTOX Green. The results clearly suggest a general good resistance of all the samples investigated. C. minteri CCFEE 5187, C. antarcticus CCFEE 515 and colonized rocks were selected as suitable candidates to withstand space flight and long-term permanence in space on the ISS in the framework of the LIchens and Fungi Experiments (LIFE programme, European Space Agency).

7.
Astrobiology ; 17(5): 459-469, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28520475

RESUMO

Kombucha microbial community (KMC) produces a cellulose-based biopolymer of industrial importance and a probiotic beverage. KMC-derived cellulose-based pellicle film is known as a highly adaptive microbial macrocolony-a stratified community of prokaryotes and eukaryotes. In the framework of the multipurpose international astrobiological project "BIOlogy and Mars Experiment (BIOMEX)," which aims to study the vitality of prokaryotic and eukaryotic organisms and the stability of selected biomarkers in low Earth orbit and in a Mars-like environment, a cellulose polymer structural integrity will be assessed as a biomarker and biotechnological nanomaterial. In a preflight assessment program for BIOMEX, the mineralized bacterial cellulose did not exhibit significant changes in the structure under all types of tests. KMC members that inhabit the cellulose-based pellicle exhibited a high survival rate; however, the survival capacity depended on a variety of stressors such as the vacuum of space, a Mars-like atmosphere, UVC radiation, and temperature fluctuations. The critical limiting factor for microbial survival was high-dose UV irradiation. In the tests that simulated a 1-year mission of exposure outside the International Space Station, the core populations of bacteria and yeasts survived and provided protection against UV; however, the microbial density of the populations overall was reduced, which was revealed by implementation of culture-dependent and culture-independent methods. Reduction of microbial richness was also associated with a lower accumulation of chemical elements in the cellulose-based pellicle film, produced by microbiota that survived in the post-test experiments, as compared to untreated cultures that populated the film. Key Words: BIOlogy and Mars Experiment (BIOMEX)-Kombucha multimicrobial community-Biosignature-Biofilm-Bacterial cellulose. Astrobiology 17, 459-469.


Assuntos
Meio Ambiente Extraterreno , Microbiota , Exobiologia , Marte , Voo Espacial , Simulação de Ambiente Espacial , Astronave , Raios Ultravioleta
8.
Astrobiology ; 15(8): 601-15, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26218403

RESUMO

Samples of the extremotolerant Antarctic endemite lichen Buellia frigida are currently exposed to low-Earth orbit-space and simulated Mars conditions at the Biology and Mars Experiment (BIOMEX), which is part of the ESA mission EXPOSE-R2 on the International Space Station and was launched on 23 July 2014. In preparation for the mission, several preflight tests (Experimental and Scientific Verification Tests, EVT and SVT) assessed the sample preparation and hardware integration procedures as well as the resistance of the candidate organism toward the abiotic stressors experienced under space and Mars conditions. Therefore, we quantified the post-exposure viability with a live/dead staining technique utilizing FUN-1 and confocal laser scanning microscopy (CLSM). In addition, we used scanning electron microscopy (SEM) to investigate putative patterns of morphological-anatomical damage that lichens may suffer under the extreme exposure conditions. The present results demonstrate that Buellia frigida is capable of surviving the conditions tested in EVT and SVT. The mycobiont showed lower average impairment of its viability than the photobiont (viability rates of >83% and >69%, respectively), and the lichen thallus suffered no significant damage in terms of thalline integrity and symbiotic contact. These results will become essential to substantiate and validate the results prospectively obtained from the returning space mission. Moreover, they will help assess the limits and limitations of terrestrial organisms under space and Mars conditions as well as characterize the adaptive traits that confer lichen extremotolerance.


Assuntos
Ascomicetos/citologia , Ascomicetos/fisiologia , Meio Ambiente Extraterreno , Líquens/citologia , Líquens/fisiologia , Corantes Fluorescentes , Marte , Viabilidade Microbiana , Microscopia Confocal , Microscopia Eletrônica de Varredura , Estresse Fisiológico , Temperatura , Raios Ultravioleta
9.
Adv Space Res ; 33(8): 1236-43, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15806704

RESUMO

Complementary to the already well-studied microorganisms, lichens, symbiotic organisms of the mycobiont (fungi) and the photobiont (algae), were used as "model systems" in which to examine the ecological potential to resist to extreme environments of outer space. Ascospores (sexual propagules of the mycobiont) of the lichens Fulgensia bracteata, Xanthoria elegans and Xanthoria parietina were exposed to selected space-simulating conditions (up to 16 h of space vacuum at 10(-3) Pa and UV radiation at 160 nm < or = lambda < or = 400 nm), while embedded in the lichen fruiting bodies. After exposure, the ascospores were discharged and their viability was tested as germination capacity on different culture media including those containing Mars regolith simulant. It was found that (i) the germination rate on media containing Mars regolith simulant was as high as on other mineral-containing media, (ii) if enclosed in the ascocarps, the ascospores survived the vacuum exposure, the UV-irradiation as well as the combined treatment of vacuum and UV to a high degree. In general, 50 % or more viable spores were recovered, with ascospores of X. elegans showing the highest survival. It is suggested that ascospores inside the ascocarps are well protected by the anatomical structure, the gelatinous layer and the pigments (parietin and carotene) against the space parameters tested.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Meio Ambiente Extraterreno , Líquens/crescimento & desenvolvimento , Vácuo , Ascomicetos/efeitos da radiação , Meios de Cultura , Líquens/efeitos da radiação , Tolerância a Radiação , Esporos Fúngicos , Raios Ultravioleta
10.
Orig Life Evol Biosph ; 38(5): 457-68, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18523859

RESUMO

Lichens are described as a symbiosis formed by a myco- and photobiont, capable of colonizing habitats where their separate symbionts would not be able to survive. Space simulation studies on the separated symbionts of the lichen Xanthoria elegans have been performed to test their capacity to resist the most extreme conditions. The isolated cultured symbiont cells were exposed to different doses of the UV spectrum, and to vacuum. Cultures of both symbionts were analysed by specific vitality tests (LIVE/DEAD-staining detected by Confocal Laser Scanning Microscopy). Growth capacity of symbiont cultures on different media was analysed after exposure to extreme environmental stresses. The data obtained support the hypothesis that the symbiotic state considerably enhances the ability of the respective symbionts to survive exposure to extreme conditions, including the conditions of space simulation. Species such as X. elegans may, therefore, be suitable for use as model organisms in exobiological studies.


Assuntos
Líquens/crescimento & desenvolvimento , Líquens/efeitos da radiação , Simulação de Ambiente Espacial , Simbiose , Raios Ultravioleta , Fluorescência , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA