Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Biochem ; 119(7): 6146-6153, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29637615

RESUMO

Ischemic heart disease often results in myocardial infarction and is the leading cause of mortality and morbidity worldwide. Improvement in the function of infarcted myocardium is a main purpose of cardiac regenerative medicine. One possible way to reach this goal is via stem cell therapy. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a variety of cell types but display limited cardiomyogenic differentiation potential. Members of the T-box family of transcription factors including Tbx20 play important roles in heart development and cardiomyocyte homeostasis. Therefore, in the current study, we investigated the potential of Tbx20 to enhance the cardiomyogenic differentiation of human adipose-derived MSCs (ADMSCs). Human ADMSCs were transduced with a bicistronic lentiviral vector encoding Tbx20 (murine) and the enhanced green fluorescent protein (eGFP) and analyzed 7 and 14 days post transduction. Transduction of human ADMSCs with this lentiviral vector increased the expression of the cardiomyogenic differentiation markers ACTN1, TNNI3, ACTC1, NKX2.5, TBX20 (human), and GATA4 as revealed by RT-qPCR. Consistently, immunocytological results showed elevated expression of α-actinin and cardiac troponin I in these cells in comparison to the cells transduced with control lentiviral particles coding for eGFP alone. Accordingly, forced expression of Tbx20 exerts cardiomyogenic effects on human ADMSCs by increasing the expression of cardiomyogenic differentiation markers at the RNA and protein level.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , Vetores Genéticos/administração & dosagem , Lentinula/genética , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/citologia , Proteínas com Domínio T/metabolismo , Tecido Adiposo/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/genética
2.
Elife ; 92020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510321

RESUMO

Homeostatic regulation protects organisms against hazardous physiological changes. However, such regulation is limited in certain organs and associated biological processes. For example, the heart fails to self-restore its normal electrical activity once disturbed, as with sustained arrhythmias. Here we present proof-of-concept of a biological self-restoring system that allows automatic detection and correction of such abnormal excitation rhythms. For the heart, its realization involves the integration of ion channels with newly designed gating properties into cardiomyocytes. This allows cardiac tissue to i) discriminate between normal rhythm and arrhythmia based on frequency-dependent gating and ii) generate an ionic current for termination of the detected arrhythmia. We show in silico, that for both human atrial and ventricular arrhythmias, activation of these channels leads to rapid and repeated restoration of normal excitation rhythm. Experimental validation is provided by injecting the designed channel current for arrhythmia termination in human atrial myocytes using dynamic clamp.


Assuntos
Arritmias Cardíacas/metabolismo , Fenômenos Eletrofisiológicos/fisiologia , Ativação do Canal Iônico , Canais Iônicos/fisiologia , Miócitos Cardíacos/fisiologia , Linhagem Celular , Simulação por Computador , Humanos , Técnicas de Patch-Clamp , Reprodutibilidade dos Testes
3.
Elife ; 72018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30260316

RESUMO

Propagation of non-linear waves is key to the functioning of diverse biological systems. Such waves can organize into spirals, rotating around a core, whose properties determine the overall wave dynamics. Theoretically, manipulation of a spiral wave core should lead to full spatiotemporal control over its dynamics. However, this theory lacks supportive evidence (even at a conceptual level), making it thus a long-standing hypothesis. Here, we propose a new phenomenological concept that involves artificially dragging spiral waves by their cores, to prove the aforementioned hypothesis in silico, with subsequent in vitro validation in optogenetically modified monolayers of rat atrial cardiomyocytes. We thereby connect previously established, but unrelated concepts of spiral wave attraction, anchoring and unpinning to demonstrate that core manipulation, through controlled displacement of heterogeneities in excitable media, allows forced movement of spiral waves along pre-defined trajectories. Consequently, we impose real-time spatiotemporal control over spiral wave dynamics in a biological system.


Assuntos
Átrios do Coração , Miócitos Cardíacos/fisiologia , Optogenética/métodos , Animais , Função Atrial/fisiologia , Simulação por Computador , Humanos , Ratos , Biologia de Sistemas
4.
EMBO Mol Med ; 8(12): 1390-1408, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27861123

RESUMO

Genetic causes of many familial arrhythmia syndromes remain elusive. In this study, whole-exome sequencing (WES) was carried out on patients from three different families that presented with life-threatening arrhythmias and high risk of sudden cardiac death (SCD). Two French Canadian probands carried identical homozygous rare variant in TECRL gene (p.Arg196Gln), which encodes the trans-2,3-enoyl-CoA reductase-like protein. Both patients had cardiac arrest, stress-induced atrial and ventricular tachycardia, and QT prolongation on adrenergic stimulation. A third patient from a consanguineous Sudanese family diagnosed with catecholaminergic polymorphic ventricular tachycardia (CPVT) had a homozygous splice site mutation (c.331+1G>A) in TECRL Analysis of intracellular calcium ([Ca2+]i) dynamics in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) generated from this individual (TECRLHom-hiPSCs), his heterozygous but clinically asymptomatic father (TECRLHet-hiPSCs), and a healthy individual (CTRL-hiPSCs) from the same Sudanese family, revealed smaller [Ca2+]i transient amplitudes as well as elevated diastolic [Ca2+]i in TECRLHom-hiPSC-CMs compared with CTRL-hiPSC-CMs. The [Ca2+]i transient also rose markedly slower and contained lower sarcoplasmic reticulum (SR) calcium stores, evidenced by the decreased magnitude of caffeine-induced [Ca2+]i transients. In addition, the decay phase of the [Ca2+]i transient was slower in TECRLHom-hiPSC-CMs due to decreased SERCA and NCX activities. Furthermore, TECRLHom-hiPSC-CMs showed prolonged action potentials (APs) compared with CTRL-hiPSC-CMs. TECRL knockdown in control human embryonic stem cell-derived CMs (hESC-CMs) also resulted in significantly longer APs. Moreover, stimulation by noradrenaline (NA) significantly increased the propensity for triggered activity based on delayed afterdepolarizations (DADs) in TECRLHom-hiPSC-CMs and treatment with flecainide, a class Ic antiarrhythmic drug, significantly reduced the triggered activity in these cells. In summary, we report that mutations in TECRL are associated with inherited arrhythmias characterized by clinical features of both LQTS and CPVT Patient-specific hiPSC-CMs recapitulated salient features of the clinical phenotype and provide a platform for drug screening evidenced by initial identification of flecainide as a potential therapeutic. These findings have implications for diagnosis and treatment of inherited cardiac arrhythmias.


Assuntos
Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Predisposição Genética para Doença , Mutação , Oxirredutases/genética , Adolescente , Adulto , Células Cultivadas , Exoma , Feminino , Genoma Humano , Humanos , Masculino , Análise de Sequência de DNA , Adulto Jovem
5.
World J Exp Med ; 5(2): 140-53, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25992329

RESUMO

AIM: To study regeneration of damaged human and murine muscle implants and the contribution of added xenogeneic mesenchymal stem cells (MSCs). METHODS: Minced human or mouse skeletal muscle tissues were implanted together with human or mouse MSCs subcutaneously on the back of non-obese diabetic/severe combined immunodeficient mice. The muscle tissues (both human and murine) were minced with scalpels into small pieces (< 1 mm(3)) and aliquoted in portions of 200 mm(3). These portions were either cryopreserved in 10% dimethylsulfoxide or freshly implanted. Syngeneic or xenogeneic MSCs were added to the minced muscles directly before implantation. Implants were collected at 7, 14, 30 or 45 d after transplantation and processed for (immuno)histological analysis. The progression of muscle regeneration was assessed using a standard histological staining (hematoxylin-phloxin-saffron). Antibodies recognizing Pax7 and von Willebrand factor were used to detect the presence of satellite cells and blood vessels, respectively. To enable detection of the bone marrow-derived MSCs or their derivatives we used MSCs previously transduced with lentiviral vectors expressing a cytoplasmic LacZ gene. X-gal staining of the fixed tissues was used to detect ß-galactosidase-positive cells and myofibers. RESULTS: Myoregeneration in implants of fresh murine muscle was evident as early as day 7, and progressed with time to occupy 50% to 70% of the implants. Regeneration of fresh human muscle was slower. These observations of fresh muscle implants were in contrast to the regeneration of cryopreserved murine muscle that proceeded similarly to that of fresh tissue except for day 45 (P < 0.05). Cryopreserved human muscle showed minimal regeneration, suggesting that the freezing procedure was detrimental to human satellite cells. In fresh and cryopreserved mouse muscle supplemented with LacZ-tagged mouse MSCs, ß-galactosidase-positive myofibers were identified early after grafting at the well-vascularized periphery of the implants. The contribution of human MSCs to murine myofiber formation was, however, restricted to the cryopreserved mouse muscle implants. This suggests that fresh murine muscle tissue provides a suboptimal environment for maintenance of human MSCs. A detailed analysis of the histological sections of the various muscle implants revealed the presence of cellular structures with a deviating morphology. Additional stainings with alizarin red and alcian blue showed myofiber calcification in 50 of 66 human muscle implants, and encapsulated cartilage in 10 of 81 of murine muscle implants, respectively. CONCLUSION: In mouse models the engagement of human MSCs in myoregeneration might be underestimated. Furthermore, our model permits the dissection of species-specific factors in the microenvironment.

6.
Iran J Basic Med Sci ; 16(7): 813-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23997910

RESUMO

OBJECTIVE(S): Adeno-associated virus type 2 (AAV2) vectors are widely used for both experimental and clinical gene therapy. A recent research has shown that the performance of these vectors can be greatly improved by substitution of specific surface-exposed tyrosine residues with phenylalanines. In this study, a fast and simple method is presented to generate AAV2 vector helper plasmids encoding capsid proteins with single, double or triple Y→F mutations. MATERIALS AND METHODS: A one-step, high-fidelity polymerase chain reaction (PCR) cloning procedure involving the use of two partially overlapping primers to amplify a circular DNA template was applied to produce AAV2 cap genes encoding VP1 mutants with Y→F substitutions in residues 444, 500 or 730. The resulting constructs were used to make the different double and triple mutant by another round of PCR (Y444500F mutant), subcloning (Y444730F and Y500730F mutants) or a combination of both techniques (Y444500730F mutant). RESULTS: Nucleotide sequence analysis revealed successful introduction of the desired mutations in the AAV2 cap gene and showed the absence of any unintended mutations in the DNA fragments used to assemble the final set of AAV2 vector helper plasmids. The correctness of these plasmids was further confirmed by restriction mapping. CONCLUSION: PCR-based, single-step site-directed mutagenesis of circular DNA templates is a highly efficient and cost-effective method to generate AAV2 vector helper plasmids encoding mutant Cap proteins for the production of vector particles with increased gene transfer efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA