Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 178(6): 1437-1451.e14, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491387

RESUMO

CCCTC-binding factor (CTCF) and cohesin are key players in three-dimensional chromatin organization. The topologically associating domains (TADs) demarcated by CTCF are remarkably well conserved between species, although genome-wide CTCF binding has diverged substantially following transposon-mediated motif expansions. Therefore, the CTCF consensus motif poorly predicts TADs, and additional factors must modulate CTCF binding and subsequent TAD formation. Here, we demonstrate that the ChAHP complex (CHD4, ADNP, HP1) competes with CTCF for a common set of binding motifs. In Adnp knockout cells, novel insulated regions are formed at sites normally bound by ChAHP, whereas proximal canonical boundaries are weakened. These data reveal that CTCF-mediated loop formation is modulated by a distinct zinc-finger protein complex. Strikingly, ChAHP-bound loci are mainly situated within less diverged SINE B2 transposable elements. This implicates ChAHP in maintenance of evolutionarily conserved spatial chromatin organization by buffering novel CTCF binding sites that emerged through SINE expansions.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Retroelementos , Animais , Sítios de Ligação , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Células-Tronco Embrionárias/citologia , Camundongos , Ligação Proteica , Domínios Proteicos
2.
Cell ; 169(4): 693-707.e14, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475897

RESUMO

The spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Acetiltransferases/metabolismo , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA , Elongases de Ácidos Graxos , Edição de Genes , Humanos , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/metabolismo , Coesinas
3.
Mol Cell ; 83(16): 2834-2836, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595552

RESUMO

In this issue, Zhang et al.1 show that CTCF blocks cohesin-mediated loop extrusion in an orientation-dependent manner. Using single-molecule imaging assays, the authors find that dCas9 and R-loops can also stall extrusion.


Assuntos
Bioensaio , Remoção , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Coesinas
4.
Cell ; 161(5): 1046-1057, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000481

RESUMO

Most cancer cells release heterogeneous populations of extracellular vesicles (EVs) containing proteins, lipids, and nucleic acids. In vitro experiments showed that EV uptake can lead to transfer of functional mRNA and altered cellular behavior. However, similar in vivo experiments remain challenging because cells that take up EVs cannot be discriminated from non-EV-receiving cells. Here, we used the Cre-LoxP system to directly identify tumor cells that take up EVs in vivo. We show that EVs released by malignant tumor cells are taken up by less malignant tumor cells located within the same and within distant tumors and that these EVs carry mRNAs involved in migration and metastasis. By intravital imaging, we show that the less malignant tumor cells that take up EVs display enhanced migratory behavior and metastatic capacity. We postulate that tumor cells locally and systemically share molecules carried by EVs in vivo and that this affects cellular behavior.


Assuntos
Células Neoplásicas Circulantes/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Integrases/metabolismo , Camundongos , Metástase Neoplásica , Vesículas Transportadoras/metabolismo
5.
Nat Rev Genet ; 24(2): 73-85, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36180596

RESUMO

Chromatin folds into dynamic loops that often span hundreds of kilobases and physically wire distant loci together for gene regulation. These loops are continuously created, extended and positioned by structural maintenance of chromosomes (SMC) protein complexes, such as condensin and cohesin, and their regulators, including CTCF, in a highly dynamic process known as loop extrusion. Genetic loss of extrusion factors is lethal, complicating their study. Inducible protein degradation technologies enable the depletion of loop extrusion factors within hours, leading to the rapid reconfiguration of chromatin folding. Here, we review how these technologies have changed our understanding of genome organization, upsetting long-held beliefs on its role in transcription. Finally, we examine recent models that attempt to reconcile observations after chronic versus acute perturbations, and discuss future developments in this rapidly developing field of research.


Assuntos
Cromatina , Cromossomos , Cromossomos/genética , Regulação da Expressão Gênica , Genoma , Proteínas de Ciclo Celular/genética
6.
Cell ; 157(2): 369-381, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24703711

RESUMO

Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional genomics and genome-engineering, we demonstrate that both 3q rearrangements reposition a distal GATA2 enhancer to ectopically activate EVI1 and simultaneously confer GATA2 functional haploinsufficiency, previously identified as the cause of sporadic familial AML/MDS and MonoMac/Emberger syndromes. Genomic excision of the ectopic enhancer restored EVI1 silencing and led to growth inhibition and differentiation of AML cells, which could be replicated by pharmacologic BET inhibition. Our data show that structural rearrangements involving the chromosomal repositioning of a single enhancer can cause deregulation of two unrelated distal genes, with cancer as the outcome.


Assuntos
Cromossomos Humanos Par 3 , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Fator de Transcrição GATA2/genética , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Proto-Oncogenes/genética , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Inversão Cromossômica , Humanos , Proteína do Locus do Complexo MDS1 e EVI1 , Regiões Promotoras Genéticas , Ativação Transcricional , Translocação Genética
7.
EMBO J ; 42(20): e113150, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37691488

RESUMO

Genome-wide transcriptional activity involves the binding of many transcription factors (TFs) to thousands of sites in the genome. Pioneer TFs are a class of TFs that maintain open chromatin and allow non-pioneer TFs access to their target sites. Determining which TF binding sites directly drive transcription remains a challenge. Here, we use acute protein depletion of the pioneer TF SOX2 to establish its functionality in maintaining chromatin accessibility. We show that thousands of accessible sites are lost within an hour of protein depletion, indicating rapid turnover of these sites in the absence of the pioneer factor. To understand the relationship with transcription, we performed nascent transcription analysis and found that open chromatin sites that are maintained by SOX2 are highly predictive of gene expression, in contrast to all other SOX2 binding sites. We use CRISPR-Cas9 genome editing in the Klf2 locus to functionally validate a predicted regulatory element. We conclude that the regulatory activity of SOX2 is exerted mainly at sites where it maintains accessibility and that other binding sites are largely dispensable for gene regulation.


Assuntos
Cromatina , Fatores de Transcrição SOXB1 , Fatores de Transcrição , Sítios de Ligação , Cromatina/genética , Regulação da Expressão Gênica , Ligação Proteica , Fatores de Transcrição/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Camundongos
8.
Mol Cell ; 76(5): 724-737.e5, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31629658

RESUMO

Condensin is a conserved SMC complex that uses its ATPase machinery to structure genomes, but how it does so is largely unknown. We show that condensin's ATPase has a dual role in chromosome condensation. Mutation of one ATPase site impairs condensation, while mutating the second site results in hyperactive condensin that compacts DNA faster than wild-type, both in vivo and in vitro. Whereas one site drives loop formation, the second site is involved in the formation of more stable higher-order Z loop structures. Using hyperactive condensin I, we reveal that condensin II is not intrinsically needed for the shortening of mitotic chromosomes. Condensin II rather is required for a straight chromosomal axis and enables faithful chromosome segregation by counteracting the formation of ultrafine DNA bridges. SMC complexes with distinct roles for each ATPase site likely reflect a universal principle that enables these molecular machines to intricately control chromosome architecture.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/química , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Cromossomos/fisiologia , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Humanos , Complexos Multiproteicos/fisiologia , Ligação Proteica/fisiologia , Subunidades Proteicas/metabolismo , Coesinas
9.
Nature ; 578(7795): 472-476, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31905366

RESUMO

Cohesin catalyses the folding of the genome into loops that are anchored by CTCF1. The molecular mechanism of how cohesin and CTCF structure the 3D genome has remained unclear. Here we show that a segment within the CTCF N terminus interacts with the SA2-SCC1 subunits of human cohesin. We report a crystal structure of SA2-SCC1 in complex with CTCF at a resolution of 2.7 Å, which reveals the molecular basis of the interaction. We demonstrate that this interaction is specifically required for CTCF-anchored loops and contributes to the positioning of cohesin at CTCF binding sites. A similar motif is present in a number of established and newly identified cohesin ligands, including the cohesin release factor WAPL2,3. Our data suggest that CTCF enables the formation of chromatin loops by protecting cohesin against loop release. These results provide fundamental insights into the molecular mechanism that enables the dynamic regulation of chromatin folding by cohesin and CTCF.


Assuntos
Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Humanos , Ligantes , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Coesinas
10.
EMBO Rep ; 23(2): e53902, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927791

RESUMO

The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its development as a genome editing tool has revolutionized the field of molecular biology. In the DNA damage field, CRISPR has brought an alternative to induce endogenous double-strand breaks (DSBs) at desired genomic locations and study the DNA damage response and its consequences. Many systems for sgRNA delivery have been reported in order to efficiently generate this DSB, including lentiviral vectors. However, some of the consequences of these systems are not yet well understood. Here, we report that lentiviral-based sgRNA vectors can integrate into the endogenous genomic target location, leading to undesired activation of the target gene. By generating a DSB in the regulatory region of the ABCB1 gene using a lentiviral sgRNA vector, we can induce the formation of Taxol-resistant colonies. We show that these colonies upregulate ABCB1 via integration of the EEF1A1 and the U6 promoters from the sgRNA vector. We believe that this is an unreported CRISPR/Cas9 on-target effect that researchers need to be aware of when using lentiviral vectors for genome editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Ativação Transcricional
11.
EMBO Rep ; 23(12): e55782, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36245428

RESUMO

Ki-67 is a chromatin-associated protein with a dynamic distribution pattern throughout the cell cycle and is thought to be involved in chromatin organization. The lack of genomic interaction maps has hampered a detailed understanding of its roles, particularly during interphase. By pA-DamID mapping in human cell lines, we find that Ki-67 associates with large genomic domains that overlap mostly with late-replicating regions. Early in interphase, when Ki-67 is present in pre-nucleolar bodies, it interacts with these domains on all chromosomes. However, later in interphase, when Ki-67 is confined to nucleoli, it shows a striking shift toward small chromosomes. Nucleolar perturbations indicate that these cell cycle dynamics correspond to nucleolar maturation during interphase, and suggest that nucleolar sequestration of Ki-67 limits its interactions with larger chromosomes. Furthermore, we demonstrate that Ki-67 does not detectably control chromatin-chromatin interactions during interphase, but it competes with the nuclear lamina for interaction with late-replicating DNA, and it controls replication timing of (peri)centromeric regions. Together, these results reveal a highly dynamic choreography of genome interactions and roles for Ki-67 in heterochromatin organization.


Assuntos
Genômica , Heterocromatina , Humanos , Heterocromatina/genética , Antígeno Ki-67/genética
12.
EMBO Rep ; 22(2): e51184, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33410591

RESUMO

Differentiation of naïve peripheral B cells into terminally differentiated plasma cells is characterized by epigenetic alterations, yet the epigenetic mechanisms that control B-cell fate remain unclear. Here, we identified a role for the histone H3K79 methyltransferase DOT1L in controlling B-cell differentiation. Mouse B cells lacking Dot1L failed to establish germinal centers (GC) and normal humoral immune responses in vivo. In vitro, activated B cells in which Dot1L was deleted showed aberrant differentiation and prematurely acquired plasma cell characteristics. Similar results were obtained when DOT1L was chemically inhibited in mature B cells in vitro. Mechanistically, combined epigenomics and transcriptomics analysis revealed that DOT1L promotes expression of a pro-proliferative, pro-GC program. In addition, DOT1L indirectly supports the repression of an anti-proliferative plasma cell differentiation program by maintaining the repression of Polycomb Repressor Complex 2 (PRC2) targets. Our findings show that DOT1L is a key modulator of the core transcriptional and epigenetic landscape in B cells, establishing an epigenetic barrier that warrants B-cell naivety and GC B-cell differentiation.


Assuntos
Linfócitos B/citologia , Diferenciação Celular , Histona-Lisina N-Metiltransferase , Histonas , Metiltransferases , Animais , Epigênese Genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos
13.
Mol Cell ; 60(4): 676-84, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26527277

RESUMO

CCCTC-binding factor (CTCF) is an architectural protein involved in the three-dimensional (3D) organization of chromatin. In this study, we assayed the 3D genomic contact profiles of a large number of CTCF binding sites with high-resolution 4C-seq. As recently reported, our data also suggest that chromatin loops preferentially form between CTCF binding sites oriented in a convergent manner. To directly test this, we used CRISPR/Cas9 genome editing to delete core CTCF binding sites in three loci, including the CTCF site in the Sox2 super-enhancer. In all instances, CTCF and cohesin recruitment were lost, and chromatin loops with distal, convergent CTCF sites were disrupted or destabilized. Re-insertion of oppositely oriented CTCF recognition sequences restored CTCF and cohesin recruitment, but did not re-establish chromatin loops. We conclude that CTCF binding polarity plays a functional role in the formation of higher-order chromatin structure.


Assuntos
Cromatina/química , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/citologia , Camundongos , Ligação Proteica , Coesinas
14.
Mol Cell ; 60(1): 146-62, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26431028

RESUMO

Dosage compensation mechanisms provide a paradigm to study the contribution of chromosomal conformation toward targeting and spreading of epigenetic regulators over a specific chromosome. By using Hi-C and 4C analyses, we show that high-affinity sites (HAS), landing platforms of the male-specific lethal (MSL) complex, are enriched around topologically associating domain (TAD) boundaries on the X chromosome and harbor more long-range contacts in a sex-independent manner. Ectopically expressed roX1 and roX2 RNAs target HAS on the X chromosome in trans and, via spatial proximity, induce spreading of the MSL complex in cis, leading to increased expression of neighboring autosomal genes. We show that the MSL complex regulates nucleosome positioning at HAS, therefore acting locally rather than influencing the overall chromosomal architecture. We propose that the sex-independent, three-dimensional conformation of the X chromosome poises it for exploitation by the MSL complex, thereby facilitating spreading in males.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Montagem e Desmontagem da Cromatina , Análise Citogenética , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Cromossomo X/genética
15.
Mol Cell ; 60(3): 460-74, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26593720

RESUMO

Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adaptor protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1 H3K4 methyltransferases and the nuclear protein phosphatase 1 (PP1) complexes to the initiating Pol II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1, or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes and active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs.


Assuntos
Núcleo Celular/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Regiões Promotoras Genéticas/fisiologia , RNA Polimerase II/metabolismo , RNA não Traduzido/biossíntese , Terminação da Transcrição Genética/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Núcleo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , RNA Polimerase II/genética , RNA não Traduzido/genética
16.
Proc Natl Acad Sci U S A ; 117(34): 20706-20716, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32764145

RESUMO

Cytotoxic T cell differentiation is guided by epigenome adaptations, but how epigenetic mechanisms control lymphocyte development has not been well defined. Here we show that the histone methyltransferase DOT1L, which marks the nucleosome core on active genes, safeguards normal differentiation of CD8+ T cells. T cell-specific ablation of Dot1L resulted in loss of naïve CD8+ T cells and premature differentiation toward a memory-like state, independent of antigen exposure and in a cell-intrinsic manner. Mechanistically, DOT1L controlled CD8+ T cell differentiation by ensuring normal T cell receptor density and signaling. DOT1L also maintained epigenetic identity, in part by indirectly supporting the repression of developmentally regulated genes. Finally, deletion of Dot1L in T cells resulted in an impaired immune response. Through our study, DOT1L is emerging as a central player in physiology of CD8+ T cells, acting as a barrier to prevent premature differentiation and controlling epigenetic integrity.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Diferenciação Celular/genética , Epigênese Genética/genética , Epigenômica , Feminino , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Histonas/metabolismo , Masculino , Metiltransferases/metabolismo , Camundongos
17.
Trends Genet ; 35(12): 883-885, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31623870

RESUMO

The genome is folded nonrandomly inside the cell nucleus. How this contributes to gene regulation is an important subject of investigation. A new study by Despang et al. shows how the spatial segregation of genes and regulatory regions can influence developmental expression in subtle, but critical ways.


Assuntos
Regulação da Expressão Gênica , Genoma , Núcleo Celular
18.
Mol Cell ; 49(3): 524-35, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23273978

RESUMO

Binding within or nearby target genes involved in cell proliferation and survival enables the p53 tumor suppressor gene to regulate their transcription and cell-cycle progression. Using genome-wide chromatin-binding profiles, we describe binding of p53 also to regions located distantly from any known p53 target gene. Interestingly, many of these regions possess conserved p53-binding sites and all known hallmarks of enhancer regions. We demonstrate that these p53-bound enhancer regions (p53BERs) indeed contain enhancer activity and interact intrachromosomally with multiple neighboring genes to convey long-distance p53-dependent transcription regulation. Furthermore, p53BERs produce, in a p53-dependent manner, enhancer RNAs (eRNAs) that are required for efficient transcriptional enhancement of interacting target genes and induction of a p53-dependent cell-cycle arrest. Thus, our results ascribe transcription enhancement activity to p53 with the capacity to regulate multiple genes from a single genomic binding site. Moreover, eRNA production from p53BERs is required for efficient p53 transcription enhancement.


Assuntos
Elementos Facilitadores Genéticos , RNA/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Cromatina/metabolismo , Cromossomos Humanos/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes , Humanos , Células MCF-7 , Modelos Genéticos , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo
19.
Am J Hum Genet ; 101(3): 326-339, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28844486

RESUMO

During pregnancy, cell-free DNA (cfDNA) in maternal blood encompasses a small percentage of cell-free fetal DNA (cffDNA), an easily accessible source for determination of fetal disease status in risk families through non-invasive procedures. In case of monogenic heritable disease, background maternal cfDNA prohibits direct observation of the maternally inherited allele. Non-invasive prenatal diagnostics (NIPD) of monogenic diseases therefore relies on parental haplotyping and statistical assessment of inherited alleles from cffDNA, techniques currently unavailable for routine clinical practice. Here, we present monogenic NIPD (MG-NIPD), which requires a blood sample from both parents, for targeted locus amplification (TLA)-based phasing of heterozygous variants selectively at a gene of interest. Capture probes-based targeted sequencing of cfDNA from the pregnant mother and a tailored statistical analysis enables predicting fetal gene inheritance. MG-NIPD was validated for 18 pregnancies, focusing on CFTR, CYP21A2, and HBB. In all cases we could predict the inherited alleles with >98% confidence, even at relatively early stages (8 weeks) of pregnancy. This prediction and the accuracy of parental haplotyping was confirmed by sequencing of fetal material obtained by parallel invasive procedures. MG-NIPD is a robust method that requires standard instrumentation and can be implemented in any clinic to provide families carrying a severe monogenic disease with a prenatal diagnostic test based on a simple blood draw.


Assuntos
Hiperplasia Suprarrenal Congênita/diagnóstico , Biomarcadores/sangue , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/diagnóstico , Polimorfismo de Nucleotídeo Único , Diagnóstico Pré-Natal/métodos , Esteroide 21-Hidroxilase/genética , Hiperplasia Suprarrenal Congênita/sangue , Hiperplasia Suprarrenal Congênita/genética , Células Cultivadas , Fibrose Cística/sangue , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/sangue , DNA/sangue , DNA/genética , Feminino , Haplótipos , Humanos , Gravidez , Esteroide 21-Hidroxilase/sangue
20.
Nucleic Acids Res ; 46(15): e91, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29800273

RESUMO

It is becoming increasingly clear that chromosome organization plays an important role in gene regulation. High-resolution methods such as 4C, Capture-C and promoter capture Hi-C (PCHiC) enable the study of chromatin loops such as those formed between promoters and enhancers or CTCF/cohesin binding sites. An important aspect of 4C/Capture-C/PCHiC analyses is the reliable identification of chromatin loops, preferably not based on visual inspection of a DNA contact profile, but on reproducible statistical analysis that robustly scores interaction peaks in the non-uniform contact background. Here, we present peakC, an R package for the analysis of 4C/Capture-C/PCHiC data. We generated 4C data for 13 viewpoints in two tissues in at least triplicate to test our methods. We developed a non-parametric peak caller based on rank-products. Sampling analysis shows that not read depth but template quality is the most important determinant of success in 4C experiments. By performing peak calling on single experiments we show that the peak calling results are similar to the replicate experiments, but that false positive rates are significantly reduced by performing replicates. Our software is user-friendly and enables robust peak calling for one-vs-all chromosome capture experiments. peakC is available at: https://github.com/deWitLab/peakC.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA/métodos , Software , Animais , Sítios de Ligação/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Fígado/embriologia , Fígado/metabolismo , Camundongos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA