RESUMO
Swarms of coupled mobile agents subject to inter-agent wireless communication delays are known to exhibit multiple dynamic patterns in space that depend on the strength of the interactions and the magnitude of the communication delays. We experimentally demonstrate communication delay-induced bifurcations in the spatiotemporal patterns of robot swarms using two distinct hardware platforms in a mixed reality framework. Additionally, we make steps toward experimentally validating theoretically predicted parameter regions where transitions between swarm patterns occur. We show that multiple rotation patterns persist even when collision avoidance strategies are incorporated, and we show the existence of multi-stable, co-existing rotational patterns not predicted by usual mean field dynamics. Our experiments are the first significant steps toward validating existing theory and the existence and robustness of the delay-induced patterns in real robotic swarms.