Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Clin Orthop Relat Res ; 471(11): 3653-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23893362

RESUMO

BACKGROUND: Débridement and bone marrow stimulation is an effective treatment option for patients with talar osteochondral defects. However, whether surgical factors affect the success of microfracture treatment of talar osteochondral defects is not well characterized. QUESTIONS/PURPOSES: We hypothesized (1) holes that reach deeper into the bone marrow-filled trabecular bone allow for more hyaline-like repair; and (2) a larger number of holes with a smaller diameter result in more solid integration of the repair tissue, less need for new bone formation, and higher fill of the defect. METHODS: Talar osteochondral defects that were 6 mm in diameter were drilled bilaterally in 16 goats (32 samples). In eight goats, one defect was treated by drilling six 0.45-mm diameter holes in the defect 2 mm deep; in the remaining eight goats, six 0.45-mm diameter holes were punctured to a depth of 4 mm. All contralateral defects were treated with three 1.1-mm diameter holes 3 mm deep, mimicking the clinical situation, as internal controls. After 24 weeks, histologic analyses were performed using Masson-Goldner/Safranin-O sections scored using a modified O'Driscoll histologic score (scale, 0-22) and analyzed for osteoid deposition. Before histology, repair tissue quality and defect fill were assessed by calculating the mean attenuation repair/healthy cartilage ratio on Equilibrium Partitioning of an Ionic Contrast agent (EPIC) micro-CT (µCT) scans. Differences were analyzed by paired comparison and Mann-Whitney U tests. RESULTS: Significant differences were not present between the 2-mm and 4-mm deep hole groups for the median O'Driscoll score (p = 0.31) and the median of the µCT attenuation repair/healthy cartilage ratios (p = 0.61), nor between the 0.45-mm diameter and the 1.1-mm diameter holes in defect fill (p = 0.33), osteoid (p = 0.89), or structural integrity (p = 0.80). CONCLUSIONS: The results indicate that the geometry of microfracture holes does not influence cartilage healing in the caprine talus. CLINICAL RELEVANCE: Bone marrow stimulation technique does not appear to be improved by changing the depth or diameter of the holes.


Assuntos
Cartilagem Articular/cirurgia , Procedimentos Ortopédicos/métodos , Tálus/cirurgia , Animais , Regeneração Óssea , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Condrogênese , Desbridamento , Feminino , Cabras , Regeneração , Tálus/diagnóstico por imagem , Tálus/patologia , Fatores de Tempo , Microtomografia por Raio-X
2.
Cartilage ; 13(2_suppl): 1627S-1636S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-31646879

RESUMO

OBJECTIVE: Surgical microfracture is considered a first-line treatment for talar osteochondral defects. However, current rigid awls and drills limit access to all locations in human joints and increase risk of heat necrosis of bone. Using a flexible water jet instrument to drill holes can improve the reachability of the defect without inducing thermal damage. The aim of this feasibility study is to determine whether water jet drilling is potentially safe compared with conventional microfracture awls by studying side effects and perioperative complications, as well as the quality of cartilage repair tissue. DESIGN: Talar chondral defects with 6-mm diameter were created bilaterally in 6 goats (12 samples). One defect in each goat was treated with microfracture created with conventional awls, the contralateral defect was treated with holes created with 5-second water jet bursts at a pressure of 50 MPa. Postoperative complications were recorded and after 24 weeks analyses were performed using the ICRS (International Cartilage Repair Society) macroscopic score and modified O'Driscoll histological score. RESULTS: Several practical issues using the water jet in the operating theatre were noted. Water jet drilling resulted in fibrocartilage repair tissue similar to the repair tissue from conventional awls. CONCLUSIONS: These results suggest that water jet drilling gives adequate fibrocartilage repair tissue. Furthermore, the results highlight essential prerequisites for safe application of surgical water jet drilling: stable water pressure, water jet beam coherence, stable positioning of the nozzle head when jetting, and minimizing excessive fluid extravasation.


Assuntos
Doenças das Cartilagens , Fraturas de Estresse , Animais , Doenças das Cartilagens/cirurgia , Estudos de Viabilidade , Cabras , Água
3.
J Mech Behav Biomed Mater ; 62: 495-503, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27288662

RESUMO

Using water jets for orthopedic procedures that require bone drilling can be beneficial due to the absence of thermal damage and the always sharp cut. Previously, the influence of the water jet diameter and bone architectural properties on the drilling depth have been determined. To develop water jet instruments that can safely drill in orthopedic surgery, the impact of the two remaining primary factors were determined: the jet time (tjet [s]) and pressure (P [MPa]). To this end, 84 holes were drilled in porcine tali and femora with water jets using Ø 0.4mm nozzle. tjet was varied between 1, 3 and 5s and P between 50 and 70MPa. Drilling depths Lhole (mm), diameters Dhole (mm) and the volume of mineralized bone per unit volume (BV/TV) were determined with microCT scans. A non-linear regression analysis resulted in the predictive equation: Lhole= 0.22 * tjet(0.18) * (1.2-BV/TV) * (P-29) (R(2)=0.904). The established relation between the machine settings and drilling depth allows surgeons to adjust jet time and pressure for the patient׳s BV/TV to drill holes at a predetermined depth. For developers, the relation allows design decisions to be made that influence the dimensions, flexibility and accuracy of water jet instruments. For a pressure of 50MPa, the potential hole depth spread indicated by the 95% confidence interval is <1.6mm for all tested jet times. This maximum variance is smaller than the accuracy required for bone debridement treatments (2-4mm deep), which confirms that water jet drilling can be applied in orthopedic surgery to drill holes in bone with controlled depth.


Assuntos
Osso e Ossos , Procedimentos Ortopédicos/métodos , Animais , Desbridamento , Humanos , Pressão , Suínos , Fatores de Tempo , Microtomografia por Raio-X
4.
J Mech Behav Biomed Mater ; 27: 84-93, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23910955

RESUMO

Using waterjets instead of rigid drill bits for bone drilling can be beneficial due to the absence of thermal damage and a consequent sharp cut. Additionally, waterjet technology allows the development of flexible instruments that facilitate maneuvering through complex joint spaces. Controlling the drilling depth is of utmost importance to ensure clinical safety, but is challenging given the local variations in structural properties of the bone. The goal of this study was to deduce a descriptive mathematical equation able to predict the hole depth and diameter based on the local structural properties of the bone at given waterjet diameters. 210 holes were drilled in porcine femora and tali with waterjet diameters (Dnozzle) of 0.3, 0.4, 0.5 and 0.6mm at a pressure of 700bar and a 5s jet time. Hole depths (Lhole), diameters (Dhole) and bone architectural properties were determined using microCT scans. The most important bone architectural property is the bone volume fraction (BV/TV), resulting in the significant predictive equations: Lhole=34.3 (⁎) Dnozzle(2)-17.6 (⁎) BV/TV+10.7 (R(2)=0.90, p<0.001), and hole Dhole=3.1(⁎) Dnozzle-0.45(⁎)BV/TV+0.54 (R(2)=0.58, p=0.02), with Lhole, Dhole and Dnozzle in mm. Drilling to a specific depth in bone tissue with a known BV/TV is possible, thereby contributing to the safe application of waterjet technology in orthopedic surgery.


Assuntos
Fêmur/cirurgia , Equipamentos Ortopédicos , Suínos , Água , Animais , Fêmur/diagnóstico por imagem , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA