Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 267, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884678

RESUMO

Neutralizing antibodies are considered a correlate of protection against severe human respiratory syncytial virus (HRSV) disease. Currently, HRSV neutralization assays are performed on immortalized cell lines like Vero or A549 cells. It is known that assays on these cell lines exclusively detect neutralizing antibodies (nAbs) directed to the fusion (F) protein. For the detection of nAbs directed to the glycoprotein (G), ciliated epithelial cells expressing the cellular receptor CX3CR1 are required, but generation of primary cell cultures is expensive and labor-intensive. Here, we developed a high-throughput neutralization assay based on the interaction between clinically relevant HRSV grown on primary cells with ciliated epithelial cells, and validated this assay using a panel of infant sera. To develop the high-throughput neutralization assay, we established a culture of differentiated apical-out airway organoids (Ap-O AO). CX3CR1 expression was confirmed, and both F- and G-specific monoclonal antibodies neutralized HRSV in the Ap-O AO. In a side-by-side neutralization assay on Vero cells and Ap-O AO, neutralizing antibody levels in sera from 125 infants correlated well, although titers on Ap-O AO were consistently lower. We speculate that these lower titers might be an actual reflection of the neutralizing antibody capacity in vivo. The organoid-based neutralization assay described here holds promise for further characterization of correlates of protection against HRSV disease.


Assuntos
Anticorpos Neutralizantes , Receptor 1 de Quimiocina CX3C , Testes de Neutralização , Organoides , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Vírus Sincicial Respiratório Humano/imunologia , Anticorpos Neutralizantes/imunologia , Organoides/metabolismo , Organoides/imunologia , Organoides/virologia , Organoides/citologia , Animais , Testes de Neutralização/métodos , Chlorocebus aethiops , Células Vero , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/imunologia , Anticorpos Antivirais/imunologia , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo , Lactente , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/virologia , Anticorpos Monoclonais/imunologia
2.
PLoS Pathog ; 13(5): e1006371, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28481926

RESUMO

Identification of cellular receptors and characterization of viral tropism in animal models have vastly improved our understanding of morbillivirus pathogenesis. However, specific aspects of viral entry, dissemination and transmission remain difficult to recapitulate in animal models. Here, we used three virologically identical but phenotypically distinct recombinant (r) canine distemper viruses (CDV) expressing different fluorescent reporter proteins for in vivo competition and airborne transmission studies in ferrets (Mustela putorius furo). Six donor ferrets simultaneously received three rCDVs expressing green, red or blue fluorescent proteins via conjunctival (ocular, Oc), intra-nasal (IN) or intra-tracheal (IT) inoculation. Two days post-inoculation sentinel ferrets were placed in physically separated adjacent cages to assess airborne transmission. All donor ferrets developed lymphopenia, fever and lethargy, showed progressively increasing systemic viral loads and were euthanized 14 to 16 days post-inoculation. Systemic replication of virus inoculated via the Oc, IN and IT routes was detected in 2/6, 5/6 and 6/6 ferrets, respectively. In five donor ferrets the IT delivered virus dominated, although replication of two or three different viruses was detected in 5/6 animals. Single lymphocytes expressing multiple fluorescent proteins were abundant in peripheral blood and lymphoid tissues, demonstrating the occurrence of double and triple virus infections. Transmission occurred efficiently and all recipient ferrets showed evidence of infection between 18 and 22 days post-inoculation of the donor ferrets. In all cases, airborne transmission resulted in replication of a single-colored virus, which was the dominant virus in the donor ferret. This study demonstrates that morbilliviruses can use multiple entry routes in parallel, and co-infection of cells during viral dissemination in the host is common. Airborne transmission was efficient, although transmission of viruses expressing a single color suggested a bottleneck event. The identity of the transmitted virus was not determined by the site of inoculation but by the viral dominance during dissemination.


Assuntos
Vírus da Cinomose Canina/fisiologia , Furões , Infecções por Morbillivirus/virologia , Morbillivirus/fisiologia , Animais , Chlorocebus aethiops , Coinfecção , Genes Reporter , Morbillivirus/patogenicidade , Infecções por Morbillivirus/transmissão , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Células Vero , Carga Viral , Internalização do Vírus
3.
Vet Res ; 48(1): 80, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162154

RESUMO

Although avian paramyxovirus type 1 is known to cause mild transient conjunctivitis in human beings, there are two recent reports of fatal respiratory disease in immunocompromised human patients infected with the pigeon lineage of the virus (PPMV-1). In order to evaluate the potential of PPMV-1 to cause respiratory tract disease, we inoculated a PPMV-1 isolate (hPPMV-1/Netherlands/579/2003) from an immunocompromised human patient into three healthy cynomolgus macaques (Macaca fascicularis) and examined them by clinical, virological, and pathological assays. In all three macaques, PPMV-1 replication was restricted to the respiratory tract and caused pulmonary consolidation affecting up to 30% of the lung surface. Both alveolar and bronchiolar epithelial cells expressed viral antigen, which co-localized with areas of diffuse alveolar damage. The results of this study demonstrate that PPMV-1 is a primary respiratory pathogen in cynomolgus macaques, and support the conclusion that PPMV-1 may cause fatal respiratory disease in immunocompromised human patients.


Assuntos
Macaca fascicularis , Doenças dos Macacos/virologia , Vírus da Doença de Newcastle/fisiologia , Infecções por Paramyxoviridae/virologia , Pneumonia/veterinária , Adulto , Animais , Feminino , Humanos , Masculino , Doenças dos Macacos/imunologia , Doenças dos Macacos/patologia , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/patologia , Pneumonia/imunologia , Pneumonia/patologia , Pneumonia/virologia
4.
J Infect Dis ; 214(4): 516-24, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27448390

RESUMO

BACKGROUND: Influenza A viruses can replicate in the olfactory mucosa and subsequently use the olfactory nerve to enter the central nervous system (CNS). It is currently unknown whether intervention strategies are able to reduce or prevent influenza virus replication within the olfactory mucosa and subsequent spread to the CNS. Therefore, we tested the efficacy of homologous vaccination and prophylactic oseltamivir to prevent H5N1 virus CNS invasion via the olfactory nerve in our ferret model. METHODS: Ferrets were vaccinated intramuscularly or received oseltamivir (5 mg/kg twice daily) prophylactically before intranasal inoculation of highly pathogenic H5N1 virus (A/Indonesia/05/2005) and were examined using virology and pathology. RESULTS: Homologous vaccination reduced H5N1 virus replication in the olfactory mucosa and prevented subsequent virus spread to the CNS. However, prophylactic oseltamivir did not prevent H5N1 virus replication in the olfactory mucosa sufficiently, resulting in CNS invasion via the olfactory nerve causing a severe meningoencephalitis. CONCLUSIONS: Within our ferret model, vaccination is more effective than prophylactic oseltamivir in preventing CNS invasion by H5N1 virus via the olfactory nerve. This study highlights the importance of including the olfactory mucosa, olfactory nerve, and CNS tissues in future vaccine and antiviral studies, especially for viruses with a known neurotropic potential.


Assuntos
Antivirais/administração & dosagem , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Meningoencefalite/prevenção & controle , Infecções por Orthomyxoviridae/complicações , Oseltamivir/administração & dosagem , Animais , Quimioprevenção/métodos , Modelos Animais de Doenças , Feminino , Furões , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/imunologia , Injeções Intramusculares , Nervo Olfatório/virologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Resultado do Tratamento
5.
J Virol ; 89(5): 2849-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540371

RESUMO

UNLABELLED: Human respiratory syncytial virus (HRSV) is the most important viral cause of severe respiratory tract disease in infants. Two subgroups (A and B) have been identified, which cocirculate during, or alternate between, yearly epidemics and cause indistinguishable disease. Existing in vitro and in vivo models of HRSV focus almost exclusively on subgroup A viruses. Here, a recombinant (r) subgroup B virus (rHRSV(B05)) was generated based on a consensus genome sequence obtained directly from an unpassaged clinical specimen from a hospitalized infant. An additional transcription unit containing the gene encoding enhanced green fluorescent protein (EGFP) was introduced between the phosphoprotein and matrix genes (position 5) of the genome to generate rHRSV(B05)EGFP(5). The recombinant viruses replicated efficiently in both HEp-2 cells and in well-differentiated normal human bronchial cells grown at air-liquid interface. Intranasal infection of cotton rats (Sigmodon hispidus) resulted in high numbers of EGFP(+) cells in epithelia of the nasal septum and conchae. When administered in a relatively large inoculum volume, the virus also replicated efficiently in bronchiolar epithelial cells and spread extensively in both the upper and lower respiratory tracts. Virus replication was not observed in ciliated epithelial cells of the trachea. This is the first virulent rHRSV strain with the genetic composition of a currently circulating wild-type virus. In vivo tracking of infected cells by means of EGFP fluorescence in the absence of cytopathic changes increases the sensitivity of virus detection in HRSV pathogenesis studies. IMPORTANCE: Virology as a discipline has depended on monitoring cytopathic effects following virus culture in vitro. However, wild-type viruses isolated from patients often do not cause significant changes to infected cells, necessitating blind passage. This can lead to genetic and phenotypic changes and the generation of high-titer, laboratory-adapted viruses with diminished virulence in animal models of disease. To address this, we determined the genome sequence of an unpassaged human respiratory syncytial virus from a sample obtained directly from an infected infant, assembled a molecular clone, and recovered a wild-type recombinant virus. Addition of a gene encoding enhanced green fluorescent protein allowed this wild-type virus to be tracked in primary human cells and living animals in the absence of significant cytopathic effects. Imaging of fluorescent cells proved to be a highly valuable tool for monitoring the spread of virus and may help improve assays for evaluating novel intervention strategies.


Assuntos
Proteínas de Fluorescência Verde/análise , Vírus Sincicial Respiratório Humano/fisiologia , Replicação Viral , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Genótipo , Proteínas de Fluorescência Verde/genética , Humanos , Lactente , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , Sistema Respiratório/virologia , Sigmodontinae , Coloração e Rotulagem , Virulência
6.
J Virol ; 89(22): 11507-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26339062

RESUMO

UNLABELLED: Infections of domestic and wild birds with low-pathogenic avian influenza viruses (LPAIVs) have been associated with protective immunity to subsequent infection. However, the degree and duration of immunity in wild birds from previous LPAIV infection, by the same or a different subtype, are poorly understood. Therefore, we inoculated H13N2 (A/black-headed gull/Netherlands/7/2009) and H16N3 (A/black-headed gull/Netherlands/26/2009) LPAIVs into black-headed gulls (Chroicocephalus ridibundus), their natural host species, and measured the long-term immune response and protection against one or two reinfections over a period of >1 year. This is the typical interval between LPAIV epizootics in wild birds. Reinfection with the same virus resulted in progressively less virus excretion, with complete abrogation of virus excretion after two infections for H13 but not H16. However, reinfection with the other virus affected neither the level nor duration of virus excretion. Virus excretion by immunologically naive birds did not differ in total levels of excreted H13 or H16 virus between first- and second-year birds, but the duration of H13 excretion was shorter for second-year birds. Furthermore, serum antibody levels did not correlate with protection against LPAIV infection. LPAIV-infected gulls showed no clinical signs of disease. These results imply that the epidemiological cycles of H13 and H16 in black-headed gulls are relatively independent from each other and depend mainly on infection of first-year birds. IMPORTANCE: Low-pathogenic avian influenza viruses (LPAIVs) circulate mainly in wild water birds but are occasionally transmitted to other species, including humans, where they cause subclinical to fatal disease. To date, the effect of LPAIV-specific immunity on the epidemiology of LPAIV in wild birds is poorly understood. In this study, we investigated the effect of H13 and H16 LPAIV infection in black-headed gulls on susceptibility and virus excretion of subsequent infection with the same or the other virus within the same breeding season and between breeding seasons. These are the only two LPAIV hemagglutinin subtypes predominating in this species. The findings suggest that H13 and H16 LPAIV cycles in black-headed gull populations are independent of each other, indicate the importance of first-year birds in LPAIV epidemiology, and emphasize the need for alternatives to avian influenza virus (AIV)-specific serum antibodies as evidence of past LPAIV infection and correlates of protection against LPAIV infection in wild birds.


Assuntos
Charadriiformes/virologia , Resistência à Doença/imunologia , Hemaglutininas Virais/imunologia , Vírus da Influenza A/imunologia , Influenza Aviária/imunologia , Fatores Etários , Animais , Anticorpos Antivirais/sangue , Proteção Cruzada/imunologia , Suscetibilidade a Doenças , Hemaglutininas Virais/classificação , Especificidade de Hospedeiro/genética , Especificidade de Hospedeiro/imunologia , Imunidade Humoral/imunologia , Imunização , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Dados de Sequência Molecular , Recidiva , Eliminação de Partículas Virais/imunologia
7.
J Virol ; 89(4): 2192-200, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25473055

RESUMO

UNLABELLED: Although live-attenuated measles virus (MV) vaccines have been used successfully for over 50 years, the target cells that sustain virus replication in vivo are still unknown. We generated a reverse genetics system for the live-attenuated MV vaccine strain Edmonston-Zagreb (EZ), allowing recovery of recombinant (r)MV(EZ). Three recombinant viruses were generated that contained the open reading frame encoding enhanced green fluorescent protein (EGFP) within an additional transcriptional unit (ATU) at various positions within the genome. rMV(EZ)EGFP(1), rMV(EZ)EGFP(3), and rMV(EZ)EGFP(6) contained the ATU upstream of the N gene, following the P gene, and following the H gene, respectively. The viruses were compared in vitro by growth curves, which indicated that rMV(EZ)EGFP(1) was overattenuated. Intratracheal infection of cynomolgus macaques with these recombinant viruses revealed differences in immunogenicity. rMV(EZ)EGFP(1) and rMV(EZ)EGFP(6) did not induce satisfactory serum antibody responses, whereas both in vitro and in vivo rMV(EZ)EGFP(3) was functionally equivalent to the commercial MV(EZ)-containing vaccine. Intramuscular vaccination of macaques with rMV(EZ)EGFP(3) resulted in the identification of EGFP(+) cells in the muscle at days 3, 5, and 7 postvaccination. Phenotypic characterization of these cells demonstrated that muscle cells were not infected and that dendritic cells and macrophages were the predominant target cells of live-attenuated MV. IMPORTANCE: Even though MV strain Edmonston-Zagreb has long been used as a live-attenuated vaccine (LAV) to protect against measles, nothing is known about the primary cells in which the virus replicates in vivo. This is vital information given the push to move toward needle-free routes of vaccination, since vaccine virus replication is essential for vaccination efficacy. We have generated a number of recombinant MV strains expressing enhanced green fluorescent protein. The virus that best mimicked the nonrecombinant vaccine virus was formulated according to protocols for production of commercial vaccine virus batches, and was subsequently used to assess viral tropism in nonhuman primates. The virus primarily replicated in professional antigen-presenting cells, which may explain why this LAV is so immunogenic and efficacious.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Macrófagos/imunologia , Macrófagos/virologia , Vacina contra Sarampo/imunologia , Vírus do Sarampo/imunologia , Músculos/imunologia , Animais , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Macaca fascicularis , Masculino , Vacina contra Sarampo/administração & dosagem , Vacina contra Sarampo/genética , Coloração e Rotulagem , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
8.
J Virol ; 89(9): 5022-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25694607

RESUMO

UNLABELLED: Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants. Despite over 50 years of research, to date no safe and efficacious RSV vaccine has been licensed. Many experimental vaccination strategies failed to induce balanced T-helper (Th) responses and were associated with adverse effects such as hypersensitivity and immunopathology upon challenge. In this study, we explored the well-established recombinant vaccinia virus (rVV) RSV-F/RSV-G vaccination-challenge mouse model to study phenotypically distinct vaccine-mediated host immune responses at the proteome level. In this model, rVV-G priming and not rVV-F priming results in the induction of Th2 skewed host responses upon RSV challenge. Mass spectrometry-based spectral count comparisons enabled us to identify seven host proteins for which expression in lung tissue is associated with an aberrant Th2 skewed response characterized by the influx of eosinophils and neutrophils. These proteins are involved in processes related to the direct influx of eosinophils (eosinophil peroxidase [Epx]) and to chemotaxis and extravasation processes (Chil3 [chitinase-like-protein 3]) as well as to eosinophil and neutrophil homing signals to the lung (Itgam). In addition, the increased levels of Arg1 and Chil3 proteins point to a functional and regulatory role for alternatively activated macrophages and type 2 innate lymphoid cells in Th2 cytokine-driven RSV vaccine-mediated enhanced disease. IMPORTANCE: RSV alone is responsible for 80% of acute bronchiolitis cases in infants worldwide and causes substantial mortality in developing countries. Clinical trials performed with formalin-inactivated RSV vaccine preparations in the 1960s failed to induce protection upon natural RSV infection and even predisposed patients for enhanced disease. Despite the clinical need, to date no safe and efficacious RSV vaccine has been licensed. Since RSV vaccines have a tendency to prime for unbalanced responses associated with an exuberant influx of inflammatory cells and enhanced disease, detailed characterization of primed host responses has become a crucial element in RSV vaccine research. We investigated the lung proteome of mice challenged with RSV upon priming with vaccine preparations known to induce phenotypically distinct host responses. Seven host proteins whose expression levels are associated with vaccine-mediated enhanced disease have been identified. The identified protein biomarkers support the development as well as detailed evaluation of next-generation RSV vaccines.


Assuntos
Biomarcadores/análise , Proteoma/análise , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Animais , Modelos Animais de Doenças , Eosinófilos/imunologia , Feminino , Pulmão/patologia , Espectrometria de Massas , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Células Th2/imunologia
9.
J Virol ; 89(11): 6131-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25810539

RESUMO

The ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to infect small animal species may be restricted given the fact that mice, ferrets, and hamsters were shown to resist MERS-CoV infection. We inoculated rabbits with MERS-CoV. Although virus was detected in the lungs, neither significant histopathological changes nor clinical symptoms were observed. Infectious virus, however, was excreted from the upper respiratory tract, indicating a potential route of MERS-CoV transmission in some animal species.


Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/crescimento & desenvolvimento , Animais , Doenças Assintomáticas , Cricetinae , Modelos Animais de Doenças , Feminino , Pulmão/patologia , Pulmão/virologia , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coelhos , Sistema Respiratório/virologia , Eliminação de Partículas Virais
10.
Am J Pathol ; 185(3): 643-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25555619

RESUMO

To elucidate the pathogenesis and transmission of influenza virus, the ferret model is typically used. To investigate protective immune responses, the use of inbred mouse strains has proven invaluable. Here, we describe a study with isogenic guinea pigs, which would uniquely combine the advantages of the mouse and ferret models for influenza virus infection. Strain 2 isogenic guinea pigs were inoculated with H1N1pdm09 influenza virus A/Netherlands/602/09 by the intranasal or intratracheal route. Viral replication kinetics were assessed by determining virus titers in nasal swabs and respiratory tissues, which were also used to assess histopathologic changes and the number of infected cells. In all guinea pigs, virus titers peaked in nasal secretions at day 2 after inoculation. Intranasal inoculation resulted in higher virus excretion via the nose and higher virus titers in the nasal turbinates than intratracheal inoculation. After intranasal inoculation, infectious virus was recovered only from nasal epithelium; after intratracheal inoculation, it was recovered also from trachea, lung, and cerebrum. Histopathologic changes corresponded with virus antigen distribution, being largely limited to nasal epithelium for intranasally infected guinea pigs and more widespread in the respiratory tract for intratracheally infected guinea pigs. In summary, isogenic guinea pigs show promise as a model to investigate the role of humoral and cell-mediated immunities to influenza and their effect on virus transmission.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Pulmão/patologia , Infecções por Orthomyxoviridae/imunologia , Traqueia/patologia , Administração Intranasal , Animais , Antígenos Virais/imunologia , Cobaias , Imunidade Celular/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/transmissão , Traqueia/imunologia , Replicação Viral
11.
J Infect Dis ; 211(5): 791-800, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25246535

RESUMO

Since the first reports in early 2013, >440 human cases of infection with avian influenza A(H7N9) have been reported including 122 fatalities. After the isolation of the first A(H7N9) viruses, the nucleotide sequences became publically available. Based on the coding sequence of the influenza virus A/Shanghai/2/2013 hemagglutinin gene, a codon-optimized gene was synthesized and cloned into a recombinant modified vaccinia virus Ankara (MVA). This MVA-H7-Sh2 viral vector was used to immunize ferrets and proved to be immunogenic, even after a single immunization. Subsequently, ferrets were challenged with influenza virus A/Anhui/1/2013 via the intratracheal route. Unprotected animals that were mock vaccinated or received empty vector developed interstitial pneumonia characterized by a marked alveolitis, accompanied by loss of appetite, weight loss, and heavy breathing. In contrast, animals vaccinated with MVA-H7-Sh2 were protected from severe disease.


Assuntos
Portadores de Fármacos , Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vaccinia virus/genética , Animais , Modelos Animais de Doenças , Feminino , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/prevenção & controle , Infecções por Orthomyxoviridae/patologia , Resultado do Tratamento , Vacinação/métodos
12.
Emerg Infect Dis ; 21(8): 1357-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26197093

RESUMO

West Nile virus (WNV) outbreaks in North America have been characterized by substantial die-offs of American crows (Corvus brachyrhynchos). In contrast, a low incidence of bird deaths has been observed during WNV epidemic activity in Europe. To examine the susceptibility of the western European counterpart of American crows, we inoculated carrion crows (Corvus corone) with WNV strains isolated in Greece (Gr-10), Italy (FIN and Ita09), and Hungary (578/10) and with the highly virulent North American genotype strain (NY99). We also inoculated American crows with a selection of these strains to examine the strains' virulence in a highly susceptible bird species. Infection with all strains, except WNV FIN, resulted in high rates of death and high-level viremia in both bird species and virus dissemination to several organs. These results suggest that carrion crows are highly susceptible to WNV and may potentially be useful as part of dead bird surveillance for early warning of WNV activity in Europe.


Assuntos
Doenças das Aves/mortalidade , Corvos/imunologia , Suscetibilidade a Doenças/mortalidade , Febre do Nilo Ocidental/mortalidade , Vírus do Nilo Ocidental/patogenicidade , Animais , Doenças das Aves/virologia , Corvos/virologia , Virulência/imunologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/classificação , Vírus do Nilo Ocidental/genética
13.
J Virol ; 88(8): 4423-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24501402

RESUMO

UNLABELLED: Measles virus (MV) is being considered for global eradication, which would likely reduce compliance with MV vaccination. As a result, children will grow up without MV-specific immunity, creating a potential niche for closely related animal morbilliviruses such as canine distemper virus (CDV). Natural CDV infection causing clinical signs has never been reported in humans, but recent outbreaks in captive macaques have shown that CDV can cause disease in primates. We studied the virulence and tropism of recombinant CDV expressing enhanced green fluorescent protein in naive and measles-vaccinated cynomolgus macaques. In naive animals CDV caused viremia and fever and predominantly infected CD150(+) lymphocytes and dendritic cells. Virus was reisolated from the upper and lower respiratory tracts, but infection of epithelial or neuronal cells was not detectable at the time points examined, and the infections were self-limiting. This demonstrates that CDV readily infects nonhuman primates but suggests that additional mutations are necessary to achieve full virulence in nonnatural hosts. Partial protection against CDV was observed in measles-vaccinated macaques, as demonstrated by accelerated control of virus replication and limited shedding from the upper respiratory tract. While neither CDV infection nor MV vaccination induced detectable cross-reactive neutralizing antibodies, MV-specific neutralizing antibody levels of MV-vaccinated macaques were boosted by CDV challenge infection, suggesting that cross-reactive VN epitopes exist. Rapid increases in white blood cell counts in MV-vaccinated macaques following CDV challenge suggested that cross-reactive cellular immune responses were also present. This study demonstrates that zoonotic morbillivirus infections can be controlled by measles vaccination. IMPORTANCE: Throughout history viral zoonoses have had a substantial impact on human health. Given the drive toward global eradication of measles, it is essential to understand the zoonotic potential of animal morbilliviruses. Morbilliviruses are thought to have evolved from a common ancestral virus that jumped species and adapted to new hosts. Recently, canine distemper virus (CDV), a morbillivirus normally restricted to carnivores, caused disease outbreaks in nonhuman primates. Here, we report that experimental CDV infection of monkeys resulted in fever and leukopenia. The virus replicated to high levels in lymphocytes but did not spread to epithelial cells or the central nervous system. Importantly, like measles virus in macaques, the infections were self-limiting. In measles-vaccinated macaques CDV was cleared more rapidly, resulting in limited virus shedding from the upper respiratory tract. These studies demonstrate that although CDV can readily infect primates, measles immunity is protective, and CDV infection is self-limiting.


Assuntos
Proteção Cruzada , Vírus da Cinomose Canina/fisiologia , Cinomose/prevenção & controle , Vacina contra Sarampo/imunologia , Vírus do Sarampo/imunologia , Sarampo/virologia , Doenças dos Macacos/prevenção & controle , Animais , Anticorpos Antivirais/imunologia , Cinomose/imunologia , Cinomose/virologia , Vírus da Cinomose Canina/imunologia , Humanos , Linfócitos/imunologia , Linfócitos/virologia , Macaca , Masculino , Sarampo/imunologia , Vacina contra Sarampo/administração & dosagem , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Vacinação
14.
J Virol ; 88(3): 1834-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24257613

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) replicates in cells of different species using dipeptidyl peptidase 4 (DPP4) as a functional receptor. Here we show the resistance of ferrets to MERS-CoV infection and inability of ferret DDP4 to bind MERS-CoV. Site-directed mutagenesis of amino acids variable in ferret DPP4 thus revealed the functional human DPP4 virus binding site. Adenosine deaminase (ADA), a DPP4 binding protein, competed for virus binding, acting as a natural antagonist for MERS-CoV infection.


Assuntos
Adenosina Desaminase/metabolismo , Infecções por Coronaviridae/enzimologia , Coronaviridae/fisiologia , Dipeptidil Peptidase 4/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Adenosina Desaminase/genética , Sequência de Aminoácidos , Animais , Coronaviridae/genética , Infecções por Coronaviridae/virologia , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/genética , Modelos Animais de Doenças , Furões , Humanos , Dados de Sequência Molecular , Ligação Proteica , Receptores Virais/química , Receptores Virais/genética , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
PLoS Pathog ; 9(5): e1003368, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23675304

RESUMO

Varicella-zoster virus (VZV) causes varicella, establishes a life-long latent infection of ganglia and reactivates to cause herpes zoster. The cell types that transport VZV from the respiratory tract to skin and ganglia during primary infection are unknown. Clinical, pathological, virological and immunological features of simian varicella virus (SVV) infection of non-human primates parallel those of primary VZV infection in humans. To identify the host cell types involved in virus dissemination and pathology, we infected African green monkeys intratracheally with recombinant SVV expressing enhanced green fluorescent protein (SVV-EGFP) and with wild-type SVV (SVV-wt) as a control. The SVV-infected cell types and virus kinetics were determined by flow cytometry and immunohistochemistry, and virus culture and SVV-specific real-time PCR, respectively. All monkeys developed fever and skin rash. Except for pneumonitis, pathology produced by SVV-EGFP was less compared to SVV-wt. In lungs, SVV infected alveolar myeloid cells and T-cells. During viremia the virus preferentially infected memory T-cells, initially central memory T-cells and subsequently effector memory T-cells. In early non-vesicular stages of varicella, SVV was seen mainly in perivascular skin infiltrates composed of macrophages, dendritic cells, dendrocytes and memory T-cells, implicating hematogenous spread. In ganglia, SVV was found primarily in neurons and occasionally in memory T-cells adjacent to neurons. In conclusion, the data suggest the role of memory T-cells in disseminating SVV to its target organs during primary infection of its natural and immunocompetent host.


Assuntos
Varicela/imunologia , Varicela/virologia , Chlorocebus aethiops , Linfócitos T/virologia , Animais , Varicela/patologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Herpesvirus Humano 3 , Imuno-Histoquímica , Masculino , Reação em Cadeia da Polimerase em Tempo Real
16.
PLoS Pathog ; 9(5): e1003343, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717200

RESUMO

Immunocompromised individuals tend to suffer from influenza longer with more serious complications than otherwise healthy patients. Little is known about the impact of prolonged infection and the efficacy of antiviral therapy in these patients. Among all 189 influenza A virus infected immunocompromised patients admitted to ErasmusMC, 71 were hospitalized, since the start of the 2009 H1N1 pandemic. We identified 11 (15%) cases with prolonged 2009 pandemic virus replication (longer than 14 days), despite antiviral therapy. In 5 out of these 11 (45%) cases oseltamivir resistant H275Y viruses emerged. Given the inherent difficulties in studying antiviral efficacy in immunocompromised patients, we have infected immunocompromised ferrets with either wild-type, or oseltamivir-resistant (H275Y) 2009 pandemic virus. All ferrets showed prolonged virus shedding. In wild-type virus infected animals treated with oseltamivir, H275Y resistant variants emerged within a week after infection. Unexpectedly, oseltamivir therapy still proved to be partially protective in animals infected with resistant virus. Immunocompromised ferrets offer an attractive alternative to study efficacy of novel antiviral therapies.


Assuntos
Antivirais/administração & dosagem , Farmacorresistência Viral , Hospedeiro Imunocomprometido , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana , Oseltamivir/administração & dosagem , Pandemias , Eliminação de Partículas Virais , Animais , Modelos Animais de Doenças , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/imunologia , Feminino , Furões , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Masculino , Estudos Retrospectivos , Eliminação de Partículas Virais/efeitos dos fármacos , Eliminação de Partículas Virais/imunologia
17.
Vet Res ; 46: 24, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25879698

RESUMO

Raptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania, Germany, in 2006 for H5N1-associated disease. We tested 624 raptors of nine species-common buzzard (385), Eurasian sparrowhawk (111), common kestrel (38), undetermined species of buzzard (36), white-tailed sea eagle (19), undetermined species of raptor (12), northern goshawk (10), peregrine falcon (6), red kite (3), rough-legged buzzard (3), and western marsh-harrier (1)-for H5N1 infection in tracheal or combined tracheal/cloacal swabs of all birds, and on major tissues of all white-tailed sea eagles. H5N1 infection was detected in two species: common buzzard (12 positive, 3.1%) and peregrine falcon (2 positive, 33.3%). In all necropsied birds (both peregrine falcons and the six freshest common buzzards), H5N1 was found most consistently and at the highest concentration in the brain, and the main H5N1-associated lesion was marked non-suppurative encephalitis. Other H5N1-associated lesions occurred in air sac, lung, oviduct, heart, pancreas, coelomic ganglion, and adrenal gland. Our results show that the main cause of death in H5N1-positive raptors was encephalitis. Our results imply that H5N1 outbreaks in wild waterbirds are more likely to lead to exposure to and mortality from H5N1 in raptors that hunt or scavenge medium-sized birds, such as common buzzards and peregrine falcons, than in raptors that hunt small birds and do not scavenge, such as Eurasian sparrowhawks and common kestrels.


Assuntos
Surtos de Doenças/veterinária , Encefalite Viral/epidemiologia , Encefalite Viral/patologia , Falconiformes , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/epidemiologia , Influenza Aviária/patologia , Animais , Cloaca/virologia , Encefalite Viral/virologia , Alemanha/epidemiologia , Influenza Aviária/complicações , Reação em Cadeia da Polimerase/veterinária , Traqueia/virologia
18.
J Gen Virol ; 95(Pt 6): 1320-1329, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24671752

RESUMO

Mass bird mortality has been observed in North America after the introduction of West Nile virus (WNV), most notably massive die-offs of American crows (Corvus brachyrhynchos). In contrast, WNV epidemic activity in Europe has been characterized by very low incidences of bird mortality. As the general susceptibility of European corvids to strains of WNV remains in question, European jackdaws (Corvus monedula) were inoculated with WNV strains circulating currently in Greece (Greece-10), Italy (FIN and Ita09) and Hungary (578/10), as well as a North American (NY99) genotype with a demonstrated corvid virulence phenotype. Infection with all strains except WNV-FIN resulted in mortality. Viraemia was observed for birds inoculated with all strains and virus was detected in a series of organs upon necropsy. These results suggested that jackdaws could potentially function as a sentinel for following WNV transmission in Europe; however, elicited viraemia levels might be too low to allow for efficient transmission of virus to mosquitoes.


Assuntos
Doenças das Aves/virologia , Corvos/virologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/patogenicidade , Animais , Suscetibilidade a Doenças , Europa (Continente) , Especificidade de Hospedeiro , Especificidade de Órgãos , RNA Helicases/metabolismo , Vigilância de Evento Sentinela/veterinária , Serina Endopeptidases/metabolismo , Especificidade da Espécie , Carga Viral , Proteínas não Estruturais Virais/metabolismo , Viremia/veterinária , Virulência , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/classificação , Vírus do Nilo Ocidental/fisiologia
19.
J Virol ; 87(7): 4033-42, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23365435

RESUMO

Measles virus (MV), one of the most contagious viruses infecting humans, causes a systemic infection leading to fever, immune suppression, and a characteristic maculopapular rash. However, the specific mechanism or mechanisms responsible for the spread of MV into the respiratory epithelium in the late stages of the disease are unknown. Here we show the crucial role of PVRL4 in mediating the spread of MV from immune to epithelial cells by generating a PVRL4 "blind" recombinant wild-type MV and developing a novel in vitro coculture model of B cells with primary differentiated normal human bronchial epithelial cells. We utilized the macaque model of measles to analyze virus distribution in the respiratory tract prior to and at the peak of MV replication. Expression of PVRL4 was widespread in both the lower and upper respiratory tract (URT) of macaques, indicating MV transmission can be facilitated by more than only epithelial cells of the trachea. Analysis of tissues collected at early time points after experimental MV infection demonstrated the presence of MV-infected lymphoid and myeloid cells contacting respiratory tract epithelium in the absence of infected epithelial cells, suggesting that these immune cells seed the infection in vivo. Thereafter, lateral cell-to-cell spread of MV led to the formation of large foci of infected cells in the trachea and high levels of MV infection in the URT, particularly in the nasal cavity. These novel findings have important implications for our understanding of the high transmissibility of measles.


Assuntos
Moléculas de Adesão Celular/metabolismo , Vírus do Sarampo/imunologia , Sarampo/imunologia , Sarampo/transmissão , Mucosa Respiratória/virologia , Animais , Linfócitos B/imunologia , Chlorocebus aethiops , Imunofluorescência , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Macaca mulatta , Mucosa Respiratória/imunologia , Células Vero , Internalização do Vírus , Replicação Viral/fisiologia
20.
J Virol ; 87(8): 4293-301, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23365444

RESUMO

The clinical symptoms caused by infection with influenza A virus vary widely and depend on the strain causing the infection, the dose and route of inoculation, and the presence of preexisting immunity. In most cases, seasonal influenza A viruses cause relatively mild upper respiratory tract disease, while sometimes patients develop an acute severe pneumonia. Heterosubtypic immunity induced by previous infections with influenza A viruses may dampen the development of clinical symptoms caused by infection with influenza A viruses of another subtype, as is the case during influenza pandemics. Here we show that ferrets acquire protective immunity after infection of the upper respiratory tract with a seasonal influenza A(H3N2) virus against subsequent infection with influenza A(H1N1)pdm09 virus inoculated by the intranasal route. However, protective heterosubtypic immunity was afforded locally, since the prior infection with the A(H3N2) virus did not provide protection against the development of pneumonia induced after intratracheal inoculation with the A(H1N1)pdm09 virus. Interestingly, some of these animals developed more severe disease than that observed in naïve control animals. These findings are of interest in light of the development of so-called universal influenza vaccines that aim at the induction of cross-reactive T cell responses.


Assuntos
Proteção Cruzada , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Animais , Modelos Animais de Doenças , Feminino , Furões , Pneumonia Viral/imunologia , Pneumonia Viral/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA