Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(5): 1241-1251.e11, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27839865

RESUMO

The epidermal growth factor receptor (EGFR) represents one of the most common target proteins in anti-cancer therapy. To directly examine the structural and dynamical properties of EGFR activation by the epidermal growth factor (EGF) in native membranes, we have developed a solid-state nuclear magnetic resonance (ssNMR)-based approach supported by dynamic nuclear polarization (DNP). In contrast to previous crystallographic results, our experiments show that the ligand-free state of the extracellular domain (ECD) is highly dynamic, while the intracellular kinase domain (KD) is rigid. Ligand binding restricts the overall and local motion of EGFR domains, including the ECD and the C-terminal region. We propose that the reduction in conformational entropy of the ECD by ligand binding favors the cooperative binding required for receptor dimerization, causing allosteric activation of the intracellular tyrosine kinase.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/isolamento & purificação , Humanos , Membranas Intracelulares/química , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Termodinâmica , Vesículas Transportadoras/química
2.
Eur J Nucl Med Mol Imaging ; 51(12): 3545-3558, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38888612

RESUMO

PURPOSE: Hepatic fibrosis develops as a response to chronic liver injury, resulting in the formation of fibrous scars. This process is initiated and driven by collagen-producing activated myofibroblasts which reportedly express high levels of platelet derived growth factor receptor-ß (PDGFRß). We therefore regard PDGFRß as an anchor for diagnosis and therapy. The Fibrobody® SP02SP26-ABD is a biparatopic VHH-construct targeting PDGFRß. Here, we explore its potential as a theranostic vector for liver fibrosis. METHODS: Specificity, cross-species binding, and cellular uptake of SP02SP26-ABD was assessed using human, mouse and rat PDGFRß ectodomains and PDGFRß-expressing cells. Cellular uptake by PDGFRß-expressing cells was also evaluated by equipping the Fibrobody® with auristatinF and reading out in vitro cytotoxicity. The validity of PDGFRß as a marker for active fibrosis was confirmed in human liver samples and 3 mouse models of liver fibrosis (DDC, CCl4, CDA-HFD) through immunohistochemistry and RT-PCR. After radiolabeling of DFO*-SP02SP26-ABD with 89Zr, its in vivo targeting ability was assessed in healthy mice and mice with liver fibrosis by PET-CT imaging, ex vivo biodistribution and autoradiography. RESULTS: SP02SP26-ABD shows similar nanomolar affinity for human, mouse and rat PDGFRß. Cellular uptake and hence subnanomolar cytotoxic potency of auristatinF-conjugated SP02SP26-ABD was observed in PDGFRß-expressing cell lines. Immunohistochemistry of mouse and human fibrotic livers confirmed co-localization of PDGFRß with markers of active fibrosis. In all three liver fibrosis models, PET-CT imaging and biodistribution analysis of [89Zr]Zr-SP02SP26-ABD revealed increased PDGFRß-specific uptake in fibrotic livers. In the DDC model, liver uptake was 12.15 ± 0.45, 15.07 ± 0.90, 20.23 ± 1.34, and 20.93 ± 4.35%ID/g after 1,2,3 and 4 weeks of fibrogenesis, respectively, compared to 7.56 ± 0.85%ID/g in healthy mice. Autoradiography revealed preferential uptake in the fibrotic (PDGFRß-expressing) periportal areas. CONCLUSION: The anti-PDGFRß Fibrobody® SP02SP26-ABD shows selective and high-degree targeting of activated myofibroblasts in liver fibrosis, and qualifies as a vector for diagnostic and therapeutic purposes.


Assuntos
Cirrose Hepática , Radioisótopos , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Zircônio , Animais , Cirrose Hepática/diagnóstico por imagem , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Camundongos , Humanos , Zircônio/química , Ratos , Distribuição Tecidual , Masculino , Marcação por Isótopo , Linhagem Celular
3.
J Immunol ; 208(9): 2207-2219, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35428691

RESUMO

Cleavage of the mammalian plasma protein C4 into C4b initiates opsonization, lysis, and clearance of microbes and damaged host cells by the classical and lectin pathways of the complement system. Dysregulated activation of C4 and other initial components of the classical pathway may cause or aggravate pathologies, such as systemic lupus erythematosus, Alzheimer disease, and schizophrenia. Modulating the activity of C4b by small-molecule or protein-based inhibitors may represent a promising therapeutic approach for preventing excessive inflammation and damage to host cells and tissue. Here, we present seven nanobodies, derived from llama (Lama glama) immunization, that bind to human C4b (Homo sapiens) with high affinities ranging from 3.2 nM to 14 pM. The activity of the nanobodies varies from no to complete inhibition of the classical pathway. The inhibiting nanobodies affect different steps in complement activation, in line with blocking sites for proconvertase formation, C3 substrate binding to the convertase, and regulator-mediated inactivation of C4b. For four nanobodies, we determined single-particle cryo-electron microscopy structures in complex with C4b at 3.4-4 Å resolution. The structures rationalize the observed functional effects of the nanobodies and define their mode of action during complement activation. Thus, we characterized seven anti-C4b nanobodies with diverse effects on the classical pathway of complement activation that may be explored for imaging, diagnostic, or therapeutic applications.


Assuntos
Complemento C4b , Anticorpos de Domínio Único , Animais , Ativação do Complemento , Convertases de Complemento C3-C5/metabolismo , Microscopia Crioeletrônica , Humanos , Mamíferos
4.
Immunity ; 38(2): 275-84, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23333074

RESUMO

Epidermal growth factor receptor (EGFR) is known to be critically involved in tissue development and homeostasis as well as in the pathogenesis of cancer. Here we showed that Foxp3(+) regulatory T (Treg) cells express EGFR under inflammatory conditions. Stimulation with the EGF-like growth factor Amphiregulin (AREG) markedly enhanced Treg cell function in vitro, and in a colitis and tumor vaccination model we showed that AREG was critical for efficient Treg cell function in vivo. In addition, mast cell-derived AREG fully restored optimal Treg cell function. These findings reveal EGFR as a component in the regulation of local immune responses and establish a link between mast cells and Treg cells. Targeting of this immune regulatory mechanism may contribute to the therapeutic successes of EGFR-targeting treatments in cancer patients.


Assuntos
Receptores ErbB/imunologia , Glicoproteínas/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Linfócitos T Reguladores/imunologia , Anfirregulina , Animais , Anticorpos Neutralizantes/farmacologia , Comunicação Celular/imunologia , Colite/induzido quimicamente , Colite/imunologia , Colite/metabolismo , Colite/patologia , Família de Proteínas EGF , Receptores ErbB/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/genética , Glicoproteínas/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/imunologia , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo
5.
Mol Pharm ; 19(10): 3511-3520, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35044182

RESUMO

Hypoxic areas are present in the majority of solid tumors, and hypoxia is associated with resistance to therapies and poor outcomes. A transmembrane protein that is upregulated by tumor cells that have adapted to hypoxic conditions is carbonic anhydrase IX (CAIX). Therefore, noninvasive imaging of CAIX could be of prognostic value, and it could steer treatment strategies. The aim of this study was to compare variants of CAIX-binding VHH B9, with and without a C-terminal albumin-binding domain with varying affinity (ABDlow and ABDhigh), for SPECT imaging of CAIX expression. The binding affinity and internalization of the various B9-variants were analyzed using SK-RC-52 cells. Biodistribution studies were performed in mice with subcutaneous SCCNij153 human head and neck cancer xenografts. Tracer uptake was determined by ex vivo radioactivity counting and visualized by SPECT/CT imaging. Furthermore, autoradiography images of tumor sections were spatially correlated with CAIX immunohistochemistry. B9-variants demonstrated a similar moderate affinity for CAIX in vitro. Maximal tumor uptake and acceptable tumor-to-blood ratios were found in the SCCNij153 model at 4 h post injection for [111In]In-DTPA-B9 (0.51 ± 0.08%ID/g and 8.1 ± 0.85, respectively), 24 h post injection for [111In]In-DTPA-B9-ABDlow (2.39 ± 0.44%ID/g and 3.66 ± 0.81, respectively) and at 72 h post injection for [111In]In-DTPA-B9-ABDhigh (8.7 ± 1.34%ID/g and 2.43 ± 0.15, respectively). An excess of unlabeled monoclonal anti-CAIX antibody efficiently inhibited tumor uptake of [111In]In-DTPA-B9, while only a partial reduction of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh uptake was found. Immunohistochemistry and autoradiography images showed colocalization of all B9-variants with CAIX expression; however, [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh also accumulated in non-CAIX expressing regions. Tumor uptake of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh, but not of [111In]In-DTPA-B9, could be visualized with SPECT/CT imaging. In conclusion, [111In]In-DTPA-B9 has a high affinity to CAIX and shows specific targeting to CAIX in head and neck cancer xenografts. The addition of ABD prolonged plasma half-life, increased tumor uptake, and enabled SPECT/CT imaging. This uptake was, however, partly CAIX- independent, precluding the ABD-tracers for use in hypoxia quantification in this tumor type.


Assuntos
Anticorpos Monoclonais , Neoplasias de Cabeça e Pescoço , Albuminas/metabolismo , Animais , Anticorpos Monoclonais/química , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Linhagem Celular Tumoral , Meia-Vida , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Hipóxia , Camundongos , Ácido Pentético , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
6.
Angew Chem Int Ed Engl ; 61(33): e202207797, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35759268

RESUMO

Biosensing approaches that combine small, engineered antibodies (nanobodies) with nanoparticles are often complicated. Here, we show that nanobodies with different C-terminal tags can be efficiently attached to a range of the most widely used biocompatible semiconductor quantum dots (QDs). Direct implementation into simplified assay formats was demonstrated by designing a rapid and wash-free mix-and-measure immunoassay for the epidermal growth factor receptor (EGFR). Terbium complex (Tb)-labeled hexahistidine-tagged nanobodies were specifically displaced from QD surfaces via EGFR-nanobody binding, leading to an EGFR concentration-dependent decrease of the Tb-to-QD Förster resonance energy transfer (FRET) signal. The detection limit of 80±20 pM (16±4 ng mL-1 ) was 3-fold lower than the clinical cut-off concentration for soluble EGFR and up to 10-fold lower compared to conventional sandwich FRET assays that required a pair of different nanobodies.


Assuntos
Pontos Quânticos , Anticorpos de Domínio Único , Receptores ErbB , Transferência Ressonante de Energia de Fluorescência , Térbio
7.
J Neurosci ; 39(22): 4221-4237, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30914448

RESUMO

Changes in inhibitory connections are essential for experience-dependent circuit adaptations. Defects in inhibitory synapses are linked to neurodevelopmental disorders, but the molecular processes underlying inhibitory synapse formation are not well understood. Here we use high-resolution two-photon microscopy in organotypic hippocampal slices from GAD65-GFP mice of both sexes to examine the signaling pathways induced by the postsynaptic signaling molecule Semaphorin4D (Sema4D) during inhibitory synapse formation. By monitoring changes in individual GFP-labeled presynaptic boutons, we found that the primary action of Sema4D is to induce stabilization of presynaptic boutons within tens of minutes. Stabilized boutons rapidly recruited synaptic vesicles, followed by accumulation of postsynaptic gephyrin and were functional after 24 h, as determined by electrophysiology and immunohistochemistry. Inhibitory boutons are only sensitive to Sema4D at a specific stage during synapse formation and sensitivity to Sema4D is regulated by network activity. We further examined the intracellular signaling cascade triggered by Sema4D and found that bouton stabilization occurs through rapid remodeling of the actin cytoskeleton. This could be mimicked by the actin-depolymerizing drug latrunculin B or by reducing ROCK activity. We discovered that the intracellular signaling cascade requires activation of the receptor tyrosine kinase MET, which is a well known autism risk factor. By using a viral approach to reduce MET levels specifically in inhibitory neurons, we found that their axons are no longer sensitive to Sema4D signaling. Together, our data yield important insights into the molecular pathway underlying activity-dependent Sema4D-induced synapse formation and reveal a novel role for presynaptic MET at inhibitory synapses.SIGNIFICANCE STATEMENT GABAergic synapses provide the main inhibitory control of neuronal activity in the brain. We wanted to unravel the sequence of molecular events that take place when formation of inhibitory synapses is triggered by a specific signaling molecule, Sema4D. We find that this signaling pathway depends on network activity and involves specific remodeling of the intracellular actin cytoskeleton. We also reveal a previously unknown role for MET at inhibitory synapses. Our study provides novel insights into the dynamic process of inhibitory synapse formation. As defects in GABAergic synapses have been implied in many brain disorders, and mutations in MET are strong risk factors for autism, our findings urge for a further investigation of the role of MET at inhibitory synapses.


Assuntos
Antígenos CD/metabolismo , Neurogênese/fisiologia , Terminações Pré-Sinápticas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Semaforinas/metabolismo , Sinapses/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Técnicas de Cultura de Órgãos
8.
J Biomol NMR ; 74(8-9): 401-412, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32562030

RESUMO

Recent advances in the field of in-cell NMR spectroscopy have made it possible to study proteins in the context of bacterial or mammalian cell extracts or even entire cells. As most mammalian cells are part of a multi-cellular complex, there is a need to develop novel NMR approaches enabling the study of proteins within the complexity of a 3D cellular environment. Here we investigate the use of the hanging drop method to grow spheroids which are homogenous in size and shape as a model system to study solid tumors using solid-state NMR (ssNMR) spectroscopy. We find that these spheroids are stable under magic-angle-spinning conditions and show a clear change in metabolic profile as compared to single cell preparations. Finally, we utilize dynamic nuclear polarization (DNP)-supported ssNMR measurements to show that low concentrations of labelled nanobodies targeting EGFR (7D12) can be detected inside the spheroids. These findings suggest that solid-state NMR can be used to directly examine proteins or other biomolecules in a 3D cellular microenvironment with potential applications in pharmacological research.


Assuntos
Espectroscopia de Ressonância Magnética , Cultura Primária de Células/métodos , Esferoides Celulares , Células Tumorais Cultivadas , Humanos , Marcação por Isótopo , Imageamento por Ressonância Magnética/métodos , Imagem Molecular , Anticorpos de Domínio Único/química
9.
J Immunol ; 198(1): 308-317, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27895170

RESUMO

Vγ9Vδ2 T cell activation plays an important role in antitumor and antimicrobial immune responses. However, there are conditions in which Vγ9Vδ2 T cell activation can be considered inappropriate for the host. Patients treated with aminobisphosphonates for hypercalcemia or metastatic bone disease often present with a debilitating acute phase response as a result of Vγ9Vδ2 T cell activation. To date, no agents are available that can clinically inhibit Vγ9Vδ2 T cell activation. In this study, we describe the identification of a single domain Ab fragment directed to the TCR of Vγ9Vδ2 T cells with neutralizing properties. This variable domain of an H chain-only Ab (VHH or nanobody) significantly inhibited both phosphoantigen-dependent and -independent activation of Vγ9Vδ2 T cells and, importantly, strongly reduced the production of inflammatory cytokines upon stimulation with aminobisphosphonate-treated cells. Additionally, in silico modeling suggests that the neutralizing VHH binds the same residues on the Vγ9Vδ2 TCR as the Vγ9Vδ2 T cell Ag-presenting transmembrane protein butyrophilin 3A1, providing information on critical residues involved in this interaction. The neutralizing Vγ9Vδ2 TCR VHH identified in this study might provide a novel approach to inhibit the unintentional Vγ9Vδ2 T cell activation as a consequence of aminobisphosphonate administration.


Assuntos
Ativação Linfocitária/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T gama-delta/antagonistas & inibidores , Anticorpos de Cadeia Única/farmacologia , Subpopulações de Linfócitos T/imunologia , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Citometria de Fluxo , Humanos , Ativação Linfocitária/imunologia , Modelos Imunológicos , Simulação de Acoplamento Molecular , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Anticorpos de Cadeia Única/imunologia
10.
Histochem Cell Biol ; 149(3): 261-268, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29327239

RESUMO

Probes are essential to visualize proteins in their cellular environment, both using light microscopy as well as electron microscopy (EM). Correlated light microscopy and electron microscopy (CLEM) requires probes that can be imaged simultaneously by both optical and electron-dense signals. Existing combinatorial probes often have impaired efficiency, need ectopic expression as a fusion protein, or do not target endogenous proteins. Here, we present FLIPPER-bodies to label endogenous proteins for CLEM. Fluorescent Indicator and Peroxidase for Precipitation with EM Resolution (FLIPPER), the combination of a fluorescent protein and a peroxidase, is fused to a nanobody against a target of interest. The modular nature of these probes allows an easy exchange of components to change its target or color. A general FLIPPER-body targeting GFP highlights histone2B-GFP both in fluorescence and in EM. Similarly, endogenous EGF receptors and HER2 are visualized at nm-scale resolution in ultrastructural context. The small and flexible FLIPPER-body outperforms IgG-based immuno-labeling, likely by better reaching the epitopes. Given the modular domains and possibilities of nanobody generation for other targets, FLIPPER-bodies have high potential to become a universal tool to identify proteins in immuno-CLEM with increased sensitivity compared to current approaches.


Assuntos
Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Peroxidase/análise , Peroxidase/química , Células Cultivadas , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Humanos , Peroxidase/metabolismo
11.
J Cell Mol Med ; 21(10): 2514-2523, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28425222

RESUMO

Drug-induced ion channel trafficking disturbance can cause cardiac arrhythmias. The subcellular level at which drugs interfere in trafficking pathways is largely unknown. KIR 2.1 inward rectifier channels, largely responsible for the cardiac inward rectifier current (IK1 ), are degraded in lysosomes. Amiodarone and dronedarone are class III antiarrhythmics. Chronic use of amiodarone, and to a lesser extent dronedarone, causes serious adverse effects to several organs and tissue types, including the heart. Both drugs have been described to interfere in the late-endosome/lysosome system. Here we defined the potential interference in KIR 2.1 backward trafficking by amiodarone and dronedarone. Both drugs inhibited IK1 in isolated rabbit ventricular cardiomyocytes at supraclinical doses only. In HK-KWGF cells, both drugs dose- and time-dependently increased KIR 2.1 expression (2.0 ± 0.2-fold with amiodarone: 10 µM, 24 hrs; 2.3 ± 0.3-fold with dronedarone: 5 µM, 24 hrs) and late-endosomal/lysosomal KIR 2.1 accumulation. Increased KIR 2.1 expression level was also observed in the presence of Nav 1.5 co-expression. Augmented KIR 2.1 protein levels and intracellular accumulation were also observed in COS-7, END-2, MES-1 and EPI-7 cells. Both drugs had no effect on Kv 11.1 ion channel protein expression levels. Finally, amiodarone (73.3 ± 10.3% P < 0.05 at -120 mV, 5 µM) enhanced IKIR2.1 upon 24-hrs treatment, whereas dronedarone tended to increase IKIR2.1 and it did not reach significance (43.8 ± 5.5%, P = 0.26 at -120 mV; 2 µM). We conclude that chronic amiodarone, and potentially also dronedarone, treatment can result in enhanced IK1 by inhibiting KIR 2.1 degradation.


Assuntos
Amiodarona/análogos & derivados , Amiodarona/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Animais , Antiarrítmicos/farmacologia , Células COS , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Dronedarona , Células HEK293 , Humanos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Coelhos
12.
Immunology ; 149(1): 111-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27312006

RESUMO

Ligation of the CD1d antigen-presenting molecule by monoclonal antibodies (mAbs) can trigger important biological functions. For therapeutic purposes camelid-derived variable domain of heavy-chain-only antibodies (VHH) have multiple advantages over mAbs because they are small, stable and have low immunogenicity. Here, we generated 21 human CD1d-specific VHH by immunizing Lama glama and subsequent phage display. Two clones induced maturation of dendritic cells, one clone induced early apoptosis in CD1d-expressing B lymphoblasts and multiple myeloma cells, and another clone blocked recognition of glycolipid-loaded CD1d by CD1d-restricted invariant natural killer T (iNKT) cells. In contrast to reported CD1d-specific mAbs, these CD1d-specific VHH have the unique characteristic that they induce specific and well-defined biological effects. This feature, combined with the above-indicated general advantages of VHH, make the CD1d-specific VHH generated here unique and useful tools to exploit both CD1d ligation as well as disruption of CD1d-iNKT interactions in the treatment of cancer or inflammatory disorders.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD1d/metabolismo , Linfócitos B/imunologia , Células Dendríticas/imunologia , Imunoterapia/métodos , Mieloma Múltiplo/terapia , Células T Matadoras Naturais/imunologia , Animais , Anticorpos Monoclonais/genética , Apresentação de Antígeno , Antígenos CD1d/imunologia , Apoptose , Camelídeos Americanos , Diferenciação Celular , Linhagem Celular , Humanos , Mieloma Múltiplo/imunologia , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/genética , Anticorpos de Domínio Único/genética
13.
Clin Immunol ; 169: 128-138, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27373969

RESUMO

Vγ9Vδ2-T cells constitute the predominant subset of γδ-T cells in human peripheral blood and have been shown to play an important role in antimicrobial and antitumor immune responses. Several efforts have been initiated to exploit these cells for cancer immunotherapy, e.g. by using phosphoantigens, adoptive cell transfer, and by a bispecific monoclonal antibody based approach. Here, we report the generation of a novel set of Vγ9Vδ2-T cell specific VHH (or nanobody). VHH have several advantages compared to conventional antibodies related to their small size, stability, ease of generating multispecific molecules and low immunogenicity. With high specificity and affinity, the anti-Vγ9Vδ2-T cell receptor VHHs are shown to be useful for FACS, MACS and immunocytochemistry. In addition, some VHH were found to specifically activate Vγ9Vδ2-T cells. Besides being of possible immunotherapeutic value, these single domain antibodies will be of great value in the further study of this important immune effector cell subset.


Assuntos
Afinidade de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Anticorpos de Domínio Único/imunologia , Linfócitos T/imunologia , Animais , Camelídeos Americanos/imunologia , Células Cultivadas , Citometria de Fluxo/métodos , Humanos , Imuno-Histoquímica/métodos , Separação Imunomagnética/métodos , Células Jurkat , Microscopia de Fluorescência , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Reprodutibilidade dos Testes , Linfócitos T/metabolismo
14.
J Cell Sci ; 126(Pt 21): 4900-12, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23943881

RESUMO

EGFR signaling is attenuated by endocytosis and degradation of receptor-ligand complexes in lysosomes. Endocytosis of EGFR is known to be regulated by multiple post-translational modifications. The observation that prevention of these modifications does not block endocytosis completely, suggests the involvement of other mechanism(s). Recently, receptor clustering has been suggested to induce internalization of multiple types of membrane receptors. However, the mechanism of clustering-induced internalization remains unknown. We have used biparatopic antibody fragments from llama (VHHs) to induce EGFR clustering without stimulating tyrosine kinase activity. Using this approach, we have found an essential role for the N-terminal GG4-like dimerization motif in the transmembrane domain (TMD) for clustering-induced internalization. Moreover, conventional EGF-induced receptor internalization depends exclusively on this TMD dimerization and kinase activity. Mutations in this dimerization motif eventually lead to reduced EGFR degradation and sustained signaling. We propose a novel role for the TMD dimerization motif in the negative-feedback control of EGFR. The widely conserved nature of GG4-like dimerization motifs in transmembrane proteins suggests a general role for these motifs in clustering-induced internalization.


Assuntos
Membrana Celular/metabolismo , Endocitose , Receptores ErbB/química , Receptores ErbB/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Dimerização , Receptores ErbB/genética , Humanos , Camundongos , Fosforilação , Estrutura Terciária de Proteína , Transdução de Sinais
15.
Proc Natl Acad Sci U S A ; 109(41): 16642-7, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23012408

RESUMO

The deregulation of the epidermal growth factor receptor (EGFR) has a significant role in the progression of tumors. Despite the development of a number of EGFR-targeting agents that can arrest tumor growth, their success in the clinic is limited in several tumor types, particularly in the highly malignant glioblastoma multiforme (GBM). In this study, we generated and characterized EGFR-specific nanobodies (ENb) and imageable and proapoptotic ENb immunoconjugates released from stem cells (SC) to ultimately develop a unique EGFR-targeted therapy for GBM. We show that ENbs released from SCs specifically localize to tumors, inhibit EGFR signaling resulting in reduced GBM growth and invasiveness in vitro and in vivo in both established and primary GBM cell lines. We also show that ENb primes GBM cells for proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Furthermore, SC-delivered immunoconjugates of ENb and TRAIL target a wide spectrum of GBM cell types with varying degrees of TRAIL resistance and significantly reduce GBM growth and invasion in both established and primary invasive GBM in mice. This study demonstrates the efficacy of SC-based EGFR targeted therapy in GBMs and provides a unique approach with clinical implications.


Assuntos
Neoplasias Encefálicas/terapia , Receptores ErbB/imunologia , Glioblastoma/terapia , Células-Tronco Neurais/transplante , Anticorpos de Domínio Único/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Apoptose/imunologia , Western Blotting , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Glioblastoma/imunologia , Glioblastoma/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Imunoconjugados/genética , Imunoconjugados/imunologia , Imunoconjugados/metabolismo , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Células NIH 3T3 , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/metabolismo , Transdução de Sinais/imunologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Resultado do Tratamento , Carga Tumoral/imunologia , Células Tumorais Cultivadas
16.
Small ; 10(4): 734-40, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24115738

RESUMO

Semiconductor quantum dot nanocrystals (QDs) for optical biosensing applications often contain thick polyethylene glycol (PEG)-based coatings in order to retain the advantageous QD properties in biological media such as blood, serum or plasma. On the other hand, the application of QDs in Förster resonance energy transfer (FRET) immunoassays, one of the most sensitive and most common fluorescence-based techniques for non-competitive homogeneous biomarker diagnostics, is limited by such thick coatings due to the increased donor-acceptor distance. In particular, the combination with large IgG antibodies usually leads to distances well beyond the common FRET range of approximately 1 to 10 nm. Herein, time-gated detection of Tb-to-QD FRET for background suppression and an increased FRET range is combined with single domain antibodies (or nanobodies) for a reduced distance in order to realize highly sensitive QD-based FRET immunoassays. The "(nano)(2) " immunoassay (combination of nanocrystals and nanobodies) is performed on a commercial clinical fluorescence plate reader and provides sub-nanomolar (few ng/mL) detection limits of soluble epidermal growth factor receptor (EGFR) in 50 µL buffer or serum samples. Apart from the first demonstration of using nanobodies for FRET-based immunoassays, the extremely low and clinically relevant detection limits of EGFR demonstrate the direct applicability of the (nano)(2-) assay to fast and sensitive biomarker detection in clinical diagnostics.


Assuntos
Receptores ErbB/sangue , Transferência Ressonante de Energia de Fluorescência/métodos , Imunoensaio/métodos , Nanopartículas/química , Pontos Quânticos/química , Anticorpos de Domínio Único/química , Calibragem , Humanos , Análise Espectral
18.
Nanomedicine ; 10(7): 1441-51, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24394212

RESUMO

Photodynamic therapy (PDT) induces cell death through light activation of a photosensitizer (PS). Targeted delivery of PS via monoclonal antibodies has improved tumor selectivity. However, these conjugates have long half-lives, leading to relatively long photosensitivity in patients. In an attempt to target PS specifically to tumors and to accelerate PS clearance, we have developed new conjugates consisting of nanobodies (NB) targeting the epidermal growth factor receptor (EGFR) and a traceable PS (IRDye700DX). These fluorescent conjugates allow the distinction of cell lines with different expression levels of EGFR. Results show that these conjugates specifically induce cell death of EGFR overexpressing cells in low nanomolar concentrations, while PS alone or the NB-PS conjugates in the absence of light induce no toxicity. Delivery of PS using internalizing biparatopic NB-PS conjugates results in even more pronounced phototoxicities. Altogether, EGFR-targeted NB-PS conjugates are specific and potent, enabling the combination of molecular imaging with cancer therapy. From the clinical editor: This study investigates the role of EGFR targeting nanobodies to deliver traceable photosensitizers to cancer molecules for therapeutic exploitation and concomitant imaging. Altogether, EGFR-targeted NB-PS conjugates combine molecular imaging with cancer therapy, the method is specific and potent, paving the way to clinical application of this technology.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Anticorpos de Domínio Único , Animais , Técnicas de Cocultura , Receptores ErbB/imunologia , Camundongos , Células NIH 3T3
19.
Structure ; 32(9): 1367-1380.e6, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38908376

RESUMO

The epidermal growth factor receptor (EGFR) is a well-known oncogenic driver in lung and other cancers. In glioblastoma multiforme (GBM), the EGFR deletion variant III (EGFRvIII) is frequently found alongside EGFR amplification. Agents targeting the EGFR axis have shown limited clinical benefits in GBM and the role of EGFRvIII in GBM is poorly understood. To shed light on the role of EGFRvIII and its potential as a therapeutic target, we determined X-ray crystal structures of a monomeric EGFRvIII extracellular region (ECR). The EGFRvIII ECR resembles the unliganded conformation of EGFR, including the orientation of the C-terminal region of domain II. Domain II is mostly disordered, but the ECR structure is compact. We selected a nanobody with preferential binding to EGFRvIII relative to EGFR and structurally defined an epitope on domain IV that is occluded in the unliganded intact EGFR. These findings suggest new avenues for EGFRvIII targeting in GBM.


Assuntos
Receptores ErbB , Ligação Proteica , Anticorpos de Domínio Único , Receptores ErbB/química , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Cristalografia por Raios X , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Modelos Moleculares , Glioblastoma/metabolismo , Domínios Proteicos , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA