Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(9): e2213044120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827263

RESUMO

Sedimentation is a ubiquitous phenomenon across many fields of science, such as geology, astrophysics, and soft matter. Sometimes, sedimentation leads to unusual phenomena, such as the Brazil-nut effect, where heavier (granular) particles reside on top of lighter particles after shaking. We show experimentally that a Brazil-nut effect can be realized in a binary colloidal system of long-range repulsive charged particles driven purely by Brownian motion and electrostatics without the need for activity. Using theory, we argue that not only the mass-per-charge for the heavier particles needs to be smaller than the mass-per-charge for the lighter particles but also that at high overall density, the system can be trapped in a long-lived metastable state, which prevents the occurrence of the equilibrium Brazil-nut effect. Therefore, we envision that our work provides valuable insights into the physics of strongly interacting systems, such as partially glassy and crystalline structures. Finally, our theory, which quantitatively agrees with the experimental data, predicts that the shapes of sedimentation density profiles of multicomponent charged colloids are greatly altered when the particles are charge-regulating with more than one ion species involved. Hence, we hypothesize that sedimentation experiments can aid in revealing the type of ion adsorption processes that determine the particle charge and possibly the value of the corresponding equilibrium constants.

2.
Chemistry ; 30(1): e202302553, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37815001

RESUMO

We have used confocal laser scanning microscopy on the small, fluorescent resorufin dye molecule to visualize molecular accessibility and diffusion in the hierarchical, anisotropic pore structure of large (~10 µm-sized) zeolite-ß crystals. The resorufin dye is widely used in life and materials science, but only in its deprotonated form because the protonated molecule is barely fluorescent in aqueous solution. In this work, we show that protonated resorufin is in fact strongly fluorescent when confined within zeolite micropores, thus enabling fluorescence microimaging experiments. We find that J-aggregation guest-guest interactions lead to a decrease in the measured fluorescence intensity that can be prevented by using non-fluorescent spacer molecules. We characterized the pore space by introducing resorufin from the outside solution and following its diffusion into zeolite-ß crystals. The eventual homogeneous distribution of resorufin molecules throughout the zeolite indicates a fully accessible pore network. This enables the quantification of the diffusion coefficient in the straight pores of zeolite-ß without the need for complex analysis, and we found a value of 3×10-15  m2  s-1 . Furthermore, we saw that diffusion through the straight pores of zeolite-ß is impeded when crossing the boundaries between zeolite subunits.

3.
Chemistry ; 30(1): e202303877, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38088555

RESUMO

Invited for the cover of this issue is the group of Professor Bert Weckhuysen at Utrecht University. The image depicts the change in fluorescence color of a resorufin dye molecule when it is protonated and confined inside the micropores of zeolite-ß. Read the full text of the article at 10.1002/chem.202302553.

4.
Nano Lett ; 23(4): 1236-1243, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36745573

RESUMO

Atomic force microscopy (AFM) is a powerful technique for imaging molecules, macromolecular complexes, and nanoparticles with nanometer resolution. However, AFM images are distorted by the shape of the tip used. These distortions can be corrected if the tip shape can be determined by scanning a sample with features sharper than the tip and higher than the object of interest. Here we present a 3D DNA origami structure as fiducial for tip reconstruction and image correction. Our fiducial is stable under a broad range of conditions and has sharp steps at different heights that enable reliable tip reconstruction from as few as ten fiducials. The DNA origami is readily codeposited with biological and nonbiological samples, achieves higher precision for the tip apex than polycrystalline samples, and dramatically improves the accuracy of the lateral dimensions determined from the images. Our fiducial thus enables accurate and precise AFM imaging for a broad range of applications.


Assuntos
DNA , Nanopartículas , Microscopia de Força Atômica/métodos , DNA/química
5.
Nat Mater ; 21(5): 572-579, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35087238

RESUMO

Metal-zeolite composites with metal (oxide) and acid sites are promising catalysts for integrating multiple reactions in tandem to produce a wide variety of wanted products without separating or purifying the intermediates. However, the conventional design of such materials often leads to uncontrolled and non-ideal spatial distributions of the metal inside/on the zeolites, limiting their catalytic performance. Here we demonstrate a simple strategy for synthesizing double-shelled, contiguous metal oxide@zeolite hollow spheres (denoted as MO@ZEO DSHSs) with controllable structural parameters and chemical compositions. This involves the self-assembly of zeolite nanocrystals onto the surface of metal ion-containing carbon spheres followed by calcination and zeolite growth steps. The step-by-step formation mechanism of the material is revealed using mainly in situ Raman spectroscopy and X-ray diffraction and ex situ electron microscopy. We demonstrate that it is due to this structure that an Fe2O3@H-ZSM-5 DSHSs-showcase catalyst exhibits superior performance compared with various conventionally structured Fe2O3-H-ZSM-5 catalysts in gasoline production by the Fischer-Tropsch synthesis. This work is expected to advance the rational synthesis and research of hierarchically hollow, core-shell, multifunctional catalyst materials.

6.
Nat Mater ; 20(9): 1216-1220, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33958769

RESUMO

Extending the toolbox from mono- to bimetallic catalysts is key in realizing efficient chemical processes1. Traditionally, the performance of bimetallic catalysts featuring one active and one selective metal is optimized by varying the metal composition1-3, often resulting in a compromise between the catalytic properties of the two metals4-6. Here we show that by designing the atomic distribution of bimetallic Au-Pd nanocatalysts, we obtain a synergistic catalytic performance in the industrially relevant selective hydrogenation of butadiene. Our single-crystalline Au-core Pd-shell nanorods were up to 50 times more active than their alloyed and monometallic counterparts, while retaining high selectivity. We find a shell-thickness-dependent catalytic activity, indicating that not only the nature of the surface but also several subsurface layers play a crucial role in the catalytic performance, and rationalize this finding using density functional theory calculations. Our results open up an alternative avenue for the structural design of bimetallic catalysts.

7.
Langmuir ; 36(9): 2403-2418, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32097015

RESUMO

We report methods to synthesize sub-micron- and micron-sized patchy silica particles with fluorescently labeled hemispherical titania protrusions, as well as routes to efficiently characterize these particles and self-assemble these particles into non-close-packed structures. The synthesis methods expand upon earlier work in the literature, in which silica particles packed in a colloidal crystal were surface-patterned with a silane coupling agent. Here, hemispherical amorphous titania protrusions were successfully labeled with fluorescent dyes, allowing for imaging by confocal microscopy and super-resolution techniques. Confocal microscopy was exploited to experimentally determine the numbers of protrusions per particle over large numbers of particles for good statistical significance, and these distributions were compared to simulations predicting the number of patches as a function of core particle polydispersity and maximum separation between the particle surfaces. We self-assembled these patchy particles into open percolating gel networks by exploiting solvophobic attractions between the protrusions.

8.
Langmuir ; 35(46): 14913-14919, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31652069

RESUMO

Seeded growth of silica rods from colloidal particles has emerged as a facile method to develop novel complex particle structures with hybrid compositions and asymmetrical shapes. However, this seeded-growth technique has been so far limited to colloidal particles of only a few materials. Here, we first develop a general synthesis for the seeded-growth of silica rods from silica particles. We then demonstrate the growth of silica rods from silica-coated particles with three different cores which highlight the generality of this synthesis: fluorescently labeled organo-silica (fluorescein), metallic (Ag), and organic (PS latex). We also demonstrate the assembly of these particles into supraparticles. This general synthesis method can be extended to the growth of silica rods from any colloidal particle which can be coated with silica.

9.
Nano Lett ; 18(6): 3675-3681, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29781269

RESUMO

We studied the formation of supraparticles from nanocrystals confined in slowly evaporating oil droplets in an oil-in-water emulsion. The nanocrystals consist of an FeO core, a CoFe2O4 shell, and oleate capping ligands, with an overall diameter of 12.5 nm. We performed in situ small- and wide-angle X-ray scattering experiments during the entire period of solvent evaporation and colloidal crystallization. We observed a slow increase in the volume fraction of nanocrystals inside the oil droplets up to 20%, at which a sudden crystallization occurs. Our computer simulations show that crystallization at such a low volume fraction is only possible if attractive interactions between colloidal nanocrystals are taken into account in the model as well. The spherical supraparticles have a diameter of about 700 nm and consist of a few crystalline face-centered cubic domains. Nanocrystal supraparticles bear importance for magnetic and optoelectronic applications, such as color tunable biolabels, color tunable phosphors in LEDs, and miniaturized lasers.

10.
Langmuir ; 33(1): 296-302, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27943677

RESUMO

Yolk/shell particles composed of a submicrometer-sized movable core and a silica shell are promising building blocks for novel optical colloidal crystals, because the locations of cores in the shell compartment can be reversibly changed by using external stimuli. Two dimensional arrays of yolk/shell particles incorporating movable cores were prepared by a self-assembly method. The movable cores of colloidal crystals in water could be observed with an optical microscope under application of external electric field. The motions of inner silica cores depended on the electric field strength and frequency and were categorized into three cases: (1) Random Brownian motion, (2) anisotropic motion of cores moving in a direction orthogonal to a field, and (3) suppressed motion fixed in the center of shell compartment. Random Brownian motion of cores was scarcely affected by field strength when a high frequency (in the MHz range) electric field was applied. On the other hand, an increase in field strength at low-frequency fields (kHz) transiently changed the core motion from (1) to (2) and a further increase in field strength changed it from (2) to (3). When the silica core was incorporated in a large void a stronger electric field was needed to suppress its motion than when it was in a small void. The high responsivity to electric fields in a low-frequency range indicated the importance of electric double layer (EDL) interaction between core and inner shell in controlling the core location in yolk/shell colloidal crystals. It was also shown that movable titania cores in yolk/shell particles required a low-frequency field with a high strength to change from the random to anisotropic motion. The result suggested that the electrostatic interaction between EDLs of the silica core and the inner silica wall could be stronger than that between EDLs of the titania core and the silica shell.

11.
Langmuir ; 33(4): 881-890, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28045541

RESUMO

The electrophoretic mobility and the zeta potential (ζ) of fluorescently labeled colloidal silica rods, with an aspect ratio of 3.8 and 6.1, were determined with microelectrophoresis measurements using confocal microscopy. In the case where the colloidal particles all move at the same speed parallel to the direction of the electric field, we record a xyz-stack over the whole depth of the capillary. This method is faster and more robust compared to taking xyt-series at different depths inside the capillary to obtain the parabolic flow profile, as was done in previous work from our group. In some cases, rodlike particles do not move all at the same speed in the electric field, but exhibit a velocity that depends on the angle between the long axis of the rod and the electric field. We measured the orientation-dependent velocity of individual silica rods during electrophoresis as a function of κa, where κ-1 is the double layer thickness and a is the radius of the rod associated with the diameter. Thus, we determined the anisotropic electrophoretic mobility of the silica rods with different sized double layers. The size of the double layer was tuned by suspending silica rods in different solvents at different electrolyte concentrations. We compared these results with theoretical predictions. We show that even at already relatively high κa when the Smoluchowski limiting law is assumed to be valid (κa > 10), an orientation dependent velocity was measured. Furthermore, we observed that at decreasing values of κa the anisotropy in the electrophoretic mobility of the rods increases. However, in low polar solvents with κa < 1, this trend was reversed: the anisotropy in the electrophoretic mobility of the rods decreased. We argue that this decrease is due to end effects, which was already predicted theoretically. When end effects are not taken into account, this will lead to strong underestimation of the experimentally determined zeta potential.

12.
Langmuir ; 33(46): 13343-13349, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29043816

RESUMO

Confocal microscopy is widely used for three-dimensional (3D) sample reconstructions. Arguably, the most significant challenge in such reconstructions is posed by the resolution along the optical axis being significantly lower than in the lateral directions. In addition, the imaging rate is lower along the optical axis in most confocal architectures, prohibiting reliable 3D reconstruction of dynamic samples. Here, we demonstrate a very simple, cheap, and generic method of multiangle microscopy, allowing high-resolution high-rate confocal slice collection to be carried out with capillary-contained colloidal samples in a wide range of slice orientations. This method, realizable with any common confocal architecture and recently implemented with macroscopic specimens enclosed in rotatable cylindrical capillaries, allows 3D reconstructions of colloidal structures to be verified by direct experiments and provides a solid testing ground for complex reconstruction algorithms. In this paper, we focus on the implementation of this method for dense nonrotatable colloidal samples, contained in complex-shaped capillaries. Additionally, we discuss strategies to minimize potential pitfalls of this method, such as the artificial appearance of chain-like particle structures.

13.
Nano Lett ; 16(3): 1818-25, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26871607

RESUMO

We performed single particle deformation experiments on silica-coated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were found to be more stable compared to uncoated rods but could still be deformed via an intermediate bullet-like shape for silica shell thicknesses of 14 nm. Changes in the size ratio of the rods after fs-illumination resulted in blue-shifting of the longitudinal plasmon resonances. Two-dimensional spatial mapping of the plasmon resonances revealed that the flat side of the bullet-like particles showed a less pronounced longitudinal plasmonic electric field enhancement. These findings were confirmed by finite-difference time-domain (FDTD) simulations. Furthermore, at higher laser fluences size reduction of the particles was found as well as for particles that were not completely deformed yet.

14.
Nat Mater ; 14(1): 56-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25173580

RESUMO

Icosahedral symmetry, which is not compatible with truly long-range order, can be found in many systems, such as liquids, glasses, atomic clusters, quasicrystals and virus-capsids. To obtain arrangements with a high degree of icosahedral order from tens of particles or more, interparticle attractive interactions are considered to be essential. Here, we report that entropy and spherical confinement suffice for the formation of icosahedral clusters consisting of up to 100,000 particles. Specifically, by using real-space measurements on nanometre- and micrometre-sized colloids, as well as computer simulations, we show that tens of thousands of hard spheres compressed under spherical confinement spontaneously crystallize into icosahedral clusters that are entropically favoured over the bulk face-centred cubic crystal structure. Our findings provide insights into the interplay between confinement and crystallization and into how these are connected to the formation of icosahedral structures.

15.
Langmuir ; 32(16): 3970-6, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27046046

RESUMO

We present the synthesis of monodisperse cone-shaped silica colloids and their fluorescent labeling. Rod-like silica colloids prepared by ammonia-catalyzed hydrolysis and condensation of tetraethyl orthosilicate in water droplets containing polyvinylpyrrolidone cross-linked by citrate ions in pentanol were found to transform into cone-shaped particles upon mild etching by NaOH in water. The diameter and length of the resulting particles were determined by those of the initial rod-like silica colloids. The mechanism responsible for the cone-shape involves silica etching taking place with a varying rate along the length of the particle. Our experiments thus also lead to new insights into the variation of the local particle structure and composition. These are found to vary gradually along the length of the rod, as a result of the way the rod grows out of a water droplet that keeps itself attached to the flat end of the bullet-shaped particles. Subtle differences in composition and structure could also be resolved by high-resolution stimulated emission depletion confocal microscopy on fluorescently labeled particles. The incorporation of a fluorescent dye chemically attached to an amine-based silane coupling agent resulted in a distribution of fluorophores mainly on the outside of the rod-shaped particles. In contrast, incorporation of the silane coupling agent alone resulted in a homogeneous distribution. Additionally, we show that etching rods, where a silane coupling agent alone was incorporated and subsequently coupled to a fluorescent dye, resulted in fluorescent silica cones, the orientation of which can be discerned using super-resolution confocal microscopy.

16.
Langmuir ; 32(5): 1233-40, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26745495

RESUMO

The depletion interaction as induced between colloids by the addition of a polymer depletant is one of the few ways in which short-ranged attractions between particles can be controlled. Due to these tunable interactions, colloid-polymer mixtures have contributed to a better understanding of the role of attractions both in equilibrium phenomena such as phase transitions and liquid surfaces as well as in systems out of equilibrium such as gelation and the glass transition. It is known that, by simple geometric effects, surface roughness decreases the strength of the depletion interaction. In this study, we demonstrate both by Monte Carlo simulations and experiments that it is possible to generate enough difference in attraction strength to induce phase separation in smooth particles but not in rough particles. Roughness was induced by coating smooth particles with smaller spherical colloids. We indicate how effective potentials can be obtained through simulations and how the interplay between gravity and the depletion interaction with a flat container wall can be used to obtain a simple measure of the interaction strengths as a function of roughness.

17.
Soft Matter ; 12(48): 9657-9665, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27869286

RESUMO

In recent years, there is a growing interest in designing artificial analogues of living systems, fueled not only by potential applications as 'smart micro-machines', but also by the demand for simple models that can be used to study the behavior of their more complex natural counterparts. Here, we present a facile, internally driven, experimental system comprised of fluorescently labeled colloidal silica rods of which the self-propulsion is powered by the decomposition of H2O2 catalyzed by a length-wise half Pt coating of the particles in order to study how shape anisotropy and swimming direction affect the collective behavior. We investigated the emerging structures and their time evolution for various particle concentrations in (quasi-)two dimensional systems for three aspect ratios of the rods on a single particle level using a combination of experiments and simulations. We found that the dynamic self-organization relied on a competition between self-propulsion and phoretic attractions induced by phoresis of the rods. We observed that the particle clustering behavior depends on the concentration as well as the aspect ratio of the rods. Our findings provide a more detailed understanding of dynamic self-organization of anisotropic particles and the role the propulsion direction plays in internally driven systems.

18.
Soft Matter ; 12(45): 9238-9245, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27792237

RESUMO

Self-assembly of binary particle systems offers many new opportunities for materials science. Here, we studied sedimentation equilibria of silica rods and spheres, using quantitative 3D confocal microscopy. We determined not only pressure, density and order parameter profiles, but also the experimental phase diagram exhibiting a stable binary smectic liquid-crystalline phase (Sm2). Using computer simulations we confirmed that the Sm2-phase can be stabilized by entropy alone, which opens up the possibility of combining new materials properties at a wide array of length scales.

19.
Soft Matter ; 12(35): 7265-72, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27406917

RESUMO

Emulsions stabilized by solid particles, called Pickering emulsions, offer promising applications in drug delivery, cosmetics, food science and the manufacturing of porous materials. This potential stems from their high stability against coalescence and 'surfactant-free' nature. Generally, Pickering emulsions require that the solid particles are wetted by both phases and as a result, the adsorption free energy is often large with respect to the thermal energy (kBT). Here we provide the first experimental proof for an alternative scenario: non-touching (effectively non-wetting), charged, particles that are completely immersed in the oil phase through a balance of charge induced attractions and repulsions caused by van der Waals forces. These particles nonetheless stabilize the emulsion. The main advantage of this novel adsorption mechanism is that these particles can easily be detached from the interface simply by adding salt. This not only makes the finding fundamentally of interest, but also enables a triggered de-emulsification and particle recovery, which is useful in fields like enhanced oil recovery, heterogeneous catalysis, and emulsion polymerization.

20.
Phys Chem Chem Phys ; 18(32): 22021-4, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27453036

RESUMO

Cadmium selenide (CdSe) nanoplatelets of a few atomic layers thick exhibit extremely sharp photoluminescence peaks and are synthesized in the zinc blende crystal structure, whereas the most stable bulk polymorph of CdSe is the wurtzite structure. These platelets can be synthesized very monodispersely in thickness, and are covered with acetate ligands. Here, we show by means of density functional theory (DFT) calculations that these ligands play a pivoting role in the stabilization of 2D nanosheets as a whole, including the deviating crystal structure. The relative stability as a function of slab thickness, strong effects on electronic properties, and implications for synthesis are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA