Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 525(7570): 533-7, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26352475

RESUMO

Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, 'mantling' has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.


Assuntos
Arecaceae/genética , Metilação de DNA , Epigênese Genética/genética , Epigenômica , Genoma de Planta/genética , Fenótipo , Retroelementos/genética , Alelos , Processamento Alternativo/genética , Arecaceae/metabolismo , Frutas/genética , Genes Homeobox/genética , Estudos de Associação Genética , Íntrons/genética , Dados de Sequência Molecular , Óleo de Palmeira , Óleos de Plantas/análise , Óleos de Plantas/metabolismo , Sítios de Splice de RNA/genética , RNA Interferente Pequeno/genética
2.
New Phytol ; 226(2): 426-440, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31863488

RESUMO

Oil palm breeding involves crossing dura and pisifera palms to produce tenera progeny with greatly improved oil yield. Oil yield is controlled by variant alleles of a type II MADS-box gene, SHELL, that impact the presence and thickness of the endocarp, or shell, surrounding the fruit kernel. We identified six novel SHELL alleles in noncommercial African germplasm populations from the Malaysian Palm Oil Board. These populations provide extensive diversity to harness genetic, mechanistic and phenotypic variation associated with oil yield in a globally critical crop. We investigated phenotypes in heteroallelic combinations, as well as SHELL heterodimerization and subcellular localization by yeast two-hybrid, bimolecular fluorescence complementation and gene expression analyses. Four novel SHELL alleles were associated with fruit form phenotype. Candidate heterodimerization partners were identified, and interactions with EgSEP3 and subcellular localization were SHELL allele-specific. Our findings reveal allele-specific mechanisms by which variant SHELL alleles impact yield, as well as speculative insights into the potential role of SHELL in single-gene oil yield heterosis. Future field trials for combinability and introgression may further optimize yield and improve sustainability.


Assuntos
Arecaceae , Melhoramento Vegetal , Alelos , Arecaceae/genética , Óleo de Palmeira , Fenótipo
3.
Nature ; 500(7462): 340-4, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23883930

RESUMO

A key event in the domestication and breeding of the oil palm Elaeis guineensis was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera. The pisifera palm is usually female-sterile. The tenera palm yields far more oil than dura, and is the basis for commercial palm oil production in all of southeast Asia. Here we describe the mapping and identification of the SHELL gene responsible for the different fruit forms. Using homozygosity mapping by sequencing, we found two independent mutations in the DNA-binding domain of a homologue of the MADS-box gene SEEDSTICK (STK, also known as AGAMOUS-LIKE 11), which controls ovule identity and seed development in Arabidopsis. The SHELL gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene hybrid vigour (or heterosis) attributed to SHELL, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation.


Assuntos
Arecaceae/genética , Arecaceae/metabolismo , Genes de Plantas/genética , Óleos de Plantas , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Homozigoto , Proteínas de Domínio MADS/genética , Dados de Sequência Molecular , Mutação , Óleo de Palmeira , Alinhamento de Sequência
4.
Nature ; 434(7034): 724-31, 2005 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15815621

RESUMO

Human chromosome 2 is unique to the human lineage in being the product of a head-to-head fusion of two intermediate-sized ancestral chromosomes. Chromosome 4 has received attention primarily related to the search for the Huntington's disease gene, but also for genes associated with Wolf-Hirschhorn syndrome, polycystic kidney disease and a form of muscular dystrophy. Here we present approximately 237 million base pairs of sequence for chromosome 2, and 186 million base pairs for chromosome 4, representing more than 99.6% of their euchromatic sequences. Our initial analyses have identified 1,346 protein-coding genes and 1,239 pseudogenes on chromosome 2, and 796 protein-coding genes and 778 pseudogenes on chromosome 4. Extensive analyses confirm the underlying construction of the sequence, and expand our understanding of the structure and evolution of mammalian chromosomes, including gene deserts, segmental duplications and highly variant regions.


Assuntos
Cromossomos Humanos Par 2/genética , Cromossomos Humanos Par 4/genética , Animais , Composição de Bases , Sequência de Bases , Centrômero/genética , Sequência Conservada/genética , Ilhas de CpG/genética , Eucromatina/genética , Etiquetas de Sequências Expressas , Duplicação Gênica , Variação Genética/genética , Genômica , Humanos , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Polimorfismo Genético/genética , Primatas/genética , Proteínas/genética , Pseudogenes/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA não Traduzido/análise , RNA não Traduzido/genética , Recombinação Genética/genética , Análise de Sequência de DNA
5.
PLoS Biol ; 5(7): e156, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17579514

RESUMO

The adult human intestine contains trillions of bacteria, representing hundreds of species and thousands of subspecies. Little is known about the selective pressures that have shaped and are shaping this community's component species, which are dominated by members of the Bacteroidetes and Firmicutes divisions. To examine how the intestinal environment affects microbial genome evolution, we have sequenced the genomes of two members of the normal distal human gut microbiota, Bacteroides vulgatus and Bacteroides distasonis, and by comparison with the few other sequenced gut and non-gut Bacteroidetes, analyzed their niche and habitat adaptations. The results show that lateral gene transfer, mobile elements, and gene amplification have played important roles in affecting the ability of gut-dwelling Bacteroidetes to vary their cell surface, sense their environment, and harvest nutrient resources present in the distal intestine. Our findings show that these processes have been a driving force in the adaptation of Bacteroidetes to the distal gut environment, and emphasize the importance of considering the evolution of humans from an additional perspective, namely the evolution of our microbiomes.


Assuntos
Bacteroides/genética , Evolução Molecular , Intestinos/microbiologia , Simbiose/genética , Adaptação Fisiológica , Bacteriófagos/genética , Bacteroides/fisiologia , Bacteroides/virologia , Conjugação Genética , Elementos de DNA Transponíveis , Ecossistema , Duplicação Gênica , Transferência Genética Horizontal , Variação Genética , Genoma Bacteriano , Humanos , Dados de Sequência Molecular , Filogenia , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie
6.
Front Plant Sci ; 7: 771, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446094

RESUMO

Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian government tax receipts.

7.
Nat Commun ; 5: 4106, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24978855

RESUMO

Oil palm, a plantation crop of major economic importance in Southeast Asia, is the predominant source of edible oil worldwide. We report the identification of the virescens (VIR) gene, which controls fruit exocarp colour and is an indicator of ripeness. VIR is a R2R3-MYB transcription factor with homology to Lilium LhMYB12 and similarity to Arabidopsis production of anthocyanin pigment1 (PAP1). We identify five independent mutant alleles of VIR in over 400 accessions from sub-Saharan Africa that account for the dominant-negative virescens phenotype. Each mutation results in premature termination of the carboxy-terminal domain of VIR, resembling McClintock's C1-I allele in maize. The abundance of alleles likely reflects cultural practices, by which fruits were venerated for magical and medicinal properties. The identification of VIR will allow selection of the trait at the seed or early-nursery stage, 3-6 years before fruits are produced, greatly advancing introgression into elite breeding material.


Assuntos
Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Nandiniidae/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Nandiniidae/classificação , Nandiniidae/genética , Proteínas Associadas a Pancreatite , Filogenia , Proteínas de Plantas/genética , Plantas/classificação , Plantas/genética
8.
BMC Proc ; 3 Suppl 7: S4, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20018031

RESUMO

The Genetic Analysis Workshop (GAW) 16 Problem 3 comprises simulated phenotypes emulating the lipid domain and its contribution to cardiovascular disease risk. For each replication there were 6,476 subjects in families from the Framingham Heart Study (FHS), with their actual genotypes for Affymetrix 550 k single-nucleotide polymorphisms (SNPs) and simulated phenotypes. Phenotypes are simulated at three visits, 10 years apart. There are up to 6 "major" genes influencing variation in high- and low-density lipoprotein cholesterol (HDL, LDL), and triglycerides (TG), and 1,000 "polygenes" simulated for each trait. Some polygenes have pleiotropic effects. The locus-specific heritabilities of the major genes range from 0.1 to 1.0%, under additive, dominant, or overdominant modes of inheritance. The locus-specific effects of the polygenes ranged from 0.002 to 0.15%, with effect sizes selected from negative exponential distributions. All polygenes act independently and have additive effects. Individuals in the LDL upper tail were designated medicated. Subjects medicated increased across visits at 2%, 5%, and 15%. Coronary artery calcification (CAC) was simulated using age, lipid levels, and CAC-specific polymorphisms. The risk of myocardial infarction before each visit was determined by CAC and its interactions with smoking and two genetic loci. Smoking was simulated to be commensurate with rates reported by the Centers for Disease Control. Two hundred replications were simulated.

9.
BMC Proc ; 3 Suppl 7: S98, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20018095

RESUMO

We examine a Bayesian Markov-chain Monte Carlo framework for simultaneous segregation and linkage analysis in the simulated single-nucleotide polymorphism data provided for Genetic Analysis Workshop 16. We conducted linkage only, linkage and association, and association only tests under this framework. We also compared these results with variance-component linkage analysis and regression analyses. The results indicate that the method shows some promise, but finding genes that have very small (<0.1%) contributions to trait variance may require additional sources of information. All methods examined fared poorly for the smallest in the simulated "polygene" range (h2 of 0.0015 to 0.0002).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA