Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 236(Pt 2): 116795, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541412

RESUMO

Uranium is considered as one of the most perilous radioactive contaminants in the aqueous environment. It has shown detrimental effects on both flora and fauna and because of its toxicities on human beings, therefore its exclusion from the aqueous environment is very essential. The utilization of metal-organic frameworks (MOFs) as an adsorbent for the removal of uranium from the aqueous environment could be a good approach. MOFs possess unique properties like high surface area, high porosity, adjustable pore size, etc. This makes them promising adsorbents for the removal of uranium from contaminated water. In this paper, sources of uranium in the water environment, human health disorders, and application of the different types of MOFs as well as the mechanisms of uranium removal have been discussed meticulously.


Assuntos
Estruturas Metalorgânicas , Urânio , Poluentes Químicos da Água , Humanos , Água , Adsorção , Poluentes Químicos da Água/análise
2.
Environ Res ; 231(Pt 2): 116142, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37217122

RESUMO

The present study identifies and analyses the degraded products of three azo dyes (Reactive Orange 16, Reactive Red 120, and Direct Red 80) and proffers their in silico toxicity predictions. In our previously published work, the synthetic dye effluents were degraded using an ozonolysis-based Advanced Oxidation Process. In the present study, the degraded products of the three dyes were analysed using GC-MS at endpoint strategy and further subjected to in silico toxicity analysis using Toxicity Estimation Software Tool (TEST), Prediction Of TOXicity of chemicals (ProTox-II), and Estimation Programs Interface Suite (EPI Suite). Several physiological toxicity endpoints, such as hepatotoxicity, carcinogenicity, mutagenicity, cellular and molecular interactions, were considered to assess the Quantitative Structure-Activity Relationships (QSAR) and adverse outcome pathways. The environmental fate of the by-products in terms of their biodegradability and possible bioaccumulation was also assessed. Results of ProTox-II suggested that the azo dye degradation products are carcinogenic, immunotoxic, and cytotoxic and displayed toxicity towards Androgen Receptor and Mitochondrial Membrane Potential. TEST results predicted LC50 and IGC50 values for three organisms Tetrahymena pyriformis, Daphnia magna, and Pimephales promelas. EPISUITE software via the BCFBAF module surmises that the degradation products' bioaccumulation (BAF) and bioconcentration factors (BCF) are high. The cumulative inference of the results suggests that most degradation by-products are toxic and need further remediation strategies. The study aims to complement existing tests to predict toxicity and prioritise the elimination/reduction of harmful degradation products of primary treatment procedures. The novelty of this study is that it streamlines in silico approaches to predict the nature of toxicity of degradation by-products of toxic industrial affluents like azo dyes. These approaches can assist the first phase of toxicology assessments for any pollutant for regulatory decision-making bodies to chalk out appropriate action plans for their remediation.


Assuntos
Rotas de Resultados Adversos , Relação Quantitativa Estrutura-Atividade , Protoporfirinogênio Oxidase/metabolismo , Mutagênicos/toxicidade , Compostos Azo/toxicidade , Corantes/toxicidade
3.
J Environ Manage ; 347: 119043, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776794

RESUMO

Advanced high-tech applications for communication, renewable energy, and display, heavily rely on technology critical elements (TCEs) such as indium, gallium, and germanium. Ensuring their sustainable supply is a pressing concern due to their high economic value and supply risks in the European Union. Recovering these elements from end-of-life (EoL) products (electronic waste: e-waste) offers a potential solution to address TCEs shortages. The review highlights recent advances in pre-treatment and hydrometallurgical and biohydrometallurgical methods for indium, gallium, and germanium recovery from EoL products, including spent liquid crystal displays (LCDs), light emitting diodes (LEDs), photovoltaics (PVs), and optical fibers (OFs). Leaching methods, including strong mineral and organic acids, and bioleaching, achieve over 95% indium recovery from spent LCDs. Recovery methods emphasize solvent extraction, chemical precipitation, and cementation. However, challenges persist in separating indium from other non-target elements like Al, Fe, Zn, and Sn. Promising purification involves solid-phase extraction, electrochemical separation, and supercritical fluid extraction. Gallium recovery from spent GaN and GaAs LEDs achieves 99% yield via leaching with HCl after annealing and HNO3, respectively. Sustainable gallium purification techniques include solvent extraction, ionic liquid extraction, and nanofiltration. Indium and gallium recovery from spent CIGS PVs achieves over 90% extraction yields via H2SO4 with citric acid-H2O2 and alkali. Although bioleaching is slower than chemical leaching (several days versus several hours), indirect bioleaching shows potential, achieving 70% gallium extraction yield. Solvent extraction and electrolysis exhibit promise for pure gallium recovery. HF or alkali roasting leaches germanium with a high yield of 98% from spent OFs. Solvent extraction achieves over 90% germanium recovery with minimal silicon co-extraction. Solid-phase extraction offers selective germanium recovery. Advancements in optimizing and implementing these e-waste recovery protocols will enhance the circularity of these TCEs.


Assuntos
Resíduo Eletrônico , Gálio , Germânio , Resíduo Eletrônico/análise , Índio/química , Peróxido de Hidrogênio , Reciclagem/métodos , Tecnologia , Gálio/química , Solventes , Álcalis
4.
J Environ Manage ; 343: 118144, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285696

RESUMO

Dosing trace metals into anaerobic digestors is proven to improve biogas production rate and yield by stimulating microorganisms involved in the metabolic pathways. Trace metal effects are governed by metal speciation and bioavailability. Though chemical equilibrium speciation models are well-established and widely used to understand metal speciation, the development of kinetic models considering biological and physicochemical processes has recently gained attention. This work proposes a dynamic model for metal speciation during anaerobic digestion which is based on a system of ordinary differential equations aimed to describe the kinetics of biological, precipitation/dissolution, gas transfer processes and, a system of algebraic equations to define fast ion complexation processes. The model also considers ion activity corrections to define effects of ionic strength. Results from this study shows the inaccuracy in predicting trace metal effects on anaerobic digestion by typical metal speciation models and the significance of considering non-ideal aqueous phase chemistry (ionic strength and ion pairing/complexation) to define speciation and metal labile fractions. Model results show a decrease in metal precipitation and increase in metal dissolved fraction and methane production yield with increase in ionic strength. Capability of the model to dynamically predict trace metal effects on anaerobic digestion under different conditions, like changing dosing conditions and initial iron to sulphide ratio, was also tested and verified. Dosing iron increases methane production and decreases hydrogen sulphide production. However, when iron to sulphide ratio is greater than 1, methane production decreases due to increase in dissolved iron which reaches inhibitory concentration levels.


Assuntos
Oligoelementos , Anaerobiose , Ferro , Metais , Concentração Osmolar , Sulfetos , Metano , Reatores Biológicos
5.
J Environ Manage ; 345: 118627, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37531861

RESUMO

This paper reviews the current problems and prospects to overcome circular water economy management challenges in European countries. The geopolitical paradigm of water, the water economy, water innovation, water management and regulation in Europe, environmental and safety concerns at water reuse, and technological solutions for water recovery are all covered in this review, which has been prepared in the frame of the COST ACTION (CA, 20133) FULLRECO4US, Working Group (WG) 4. With a Circular Economy approach to water recycling and recovery based on this COST Action, this review paper aims to develop novel, futuristic solutions to overcome the difficulties that the European Union (EU) is currently facing. The detailed review of the current environmental barriers and upcoming difficulties for water reuse in Europe with a Circular Economy vision is another distinctive aspect of this study. It is observed that the biggest challenge in using and recycling water from wastewater treatment plants is dealing with technical, social, political, and economic issues. For instance, geographical differences significantly affect technological problems, and it is effective in terms of social acceptance of the reuse of treated water. Local governmental organizations should support and encourage initiatives to expand water reuse, particularly for agricultural and industrial uses across all of Europe. It should not also be disregarded that the latest hydro politics approach to water management will actively contribute to addressing the issues associated with water scarcity.


Assuntos
Purificação da Água , Água , Europa (Continente) , Purificação da Água/métodos , União Europeia , Agricultura , Reciclagem
6.
Environ Res ; 210: 112891, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35183514

RESUMO

Currently, the applications of biochar (BC) in agricultural practices and for environmental remediation purposes have demonstrated multifaceted advantages despite a few limitations. Nano-BC offers considerable opportunities especially for the remediation of hazardous contaminants as well as the improvement of crop productivity. Positive outcomes of nano-BC on soil physico-chemical and biological characteristics have indicated its suitability for agricultural applications. Nano-BC may effectively regulate the mobilization and sorption of important micro- and macro-nutrients, along with the hazardous contaminants including potentially toxic metals, pesticides, etc. Additionally, the sorption characteristics of nano-BC depends substantially on feedstock materials and pyrolysis temperatures. Nevertheless, the conducted investigations regarding nano-BC are in infant stages, requiring extensive field investigations. The nano-enhanced properties of BC on one hand dramatically improve its effectiveness and sustainability, on the other hand, there may be associated with toxicity development in diverse aquatic and/or terrestrial environments. Therefore, risk assessment on soil organisms and its indirect impact on human health is another area of concern linked with the field application of nano-BC. The present review delineates the potentiality of nano-BC as an emerging sorbent for sustainable agriculture and environmental applications.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Agricultura , Carvão Vegetal , Humanos , Solo/química , Poluentes do Solo/análise
7.
J Environ Manage ; 301: 113850, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619590

RESUMO

Chitosan is a natural fiber, chemically cellulose-like biopolymer, which is processed from chitin. Its use as a natural polymer is getting more attention because it is non-toxic, renewable, and biocompatible. However, its poor mechanical and thermal strength, particle size, and surface area restrict its industrial use. Consequently, to improve these properties, cellulose and/or inorganic nanoparticles have been used. This review discusses the recent progress of chitosan and cellulose composite materials, their preparation, and their applications in different industrial sectors. It also discusses the modification of chitosan and cellulose composite materials to allow their use on a large scale. Finally, the recent development of chitosan composite materials for drug delivery, food packaging, protective coatings, and wastewater treatment are discussed. The challenges and perspectives for future research are also considered. This review suggests that chitosan and cellulose nano-composite are promising, low-cost products for environmental remediation involving a simple production process.


Assuntos
Quitosana , Nanocompostos , Purificação da Água , Materiais Biocompatíveis , Celulose , Quitina
8.
Environ Res ; 195: 110844, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33577773

RESUMO

Electrocatalytic removal of fluroquinolones from simulated pharmaceutical effluent is studied in this work. The effects of parameters like NaCl concentration, pH and initial concentration of Ofloxacin were studied. The synergistic effect of H2O2 on the degradation of Ofloxacin paves the way to move towards radical based chemistry. The process was modelled and statistically evaluated through Central Composite Design approach towards the maximum concentration of Ofloxacin degraded (for 0.8 mM) as 0.46 mM at pH-3.0 and the concentration of H2O2 at 0.2 mM. The model was analyzed mathematically and observed as saddle response based on canonical and ridge analysis. The process follows pseudo first order kinetics with k = 0.047 min-1 and reaction rate of 13.6 mg.L-1.min-1. The mineralization efficiency of the process was studied using Total Organic Carbon analysis and 76.5% removal efficiency was obtained on the simulated pharmaceutical effluent containing Ofloxacin, Ciprofloxacin and Norfloxacin. The crystal structure of the green and red colour sludge was determined by XRD to be lepidocrocite (a = 3.87 Å, b = 12.4 Å, c = 3.06 Å) and gupeiite (a = 5.6620 Å), respectively. The elemental composition of sludge and electrodes were found using SEM-EDX. Morphological change in electrode surface was determined using roughness plot.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Eletrodos , Peróxido de Hidrogênio , Oxirredução , Esgotos , Poluentes Químicos da Água/análise
9.
Environ Res ; 195: 110761, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524333

RESUMO

Natural organic matter (NOM) from Sphagnum peat soil is extracted in water and subjected to several investigations to obtain structural and conformational information. Data show that the extracted NOM is self-organized in colloidal aggregates of variable sizes (from nano to micro scales, depending on the solvent composition, i.e., ultrapure water, solutions with denaturing agents, acetone, ethanol). Aggregates are formed by highly heterogeneous classes of organic compounds. According to the results of nuclear magnetic resonance and fluorescence measurements, the three-dimensional structure of aggregates, revealed by scanning electron microscope imaging, is supposed to be stabilized by the exposition of polar functional groups to the solvent, with consequent formation of hydrogen bonds, dipole-interactions and cation bridging. In contrast, the inner part of the aggregates displays hydrophobic features and is hypothesized to be further reinforced by the establishment of π-stacking interactions. The structure is assumed to be a supramolecular aggregation of small-medium oligomeric fragments (Max 750 Da) in which priority pollutants are entrapped by dispersive forces. The structures are shown to be nanosized spheroidal particles further aggregated to form higher dimension supra-structures. Carbohydrates play primary role, stabilizing the structure and giving marked hydrophilic properties to the aggregates.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Substâncias Húmicas/análise , Interações Hidrofóbicas e Hidrofílicas , Máscaras , Solo , Água
10.
J Environ Manage ; 294: 112916, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118518

RESUMO

This study investigates the prediction of the removal efficiency of emerging organic contaminants (EOCs) (pharmaceuticals-PhCs, personal care products-PCPs, and steroidal hormones-SHs) in constructed wetlands based on their physicochemical properties (e.g., molecular weight-MW, octanol-water partition coefficient-Log Kow, soil organic carbon sorption coefficient-Log Koc, octanol-water distribution coefficient-Log Dow, and dissociation constant-pKa). The predictive models are formed based on statistical analysis underpinned by principle component, correlation, and regression analyses of a global data set compiled from peer-reviewed publications. The results show that the physicochemical properties of EOCs emerged as good predictors of their removal efficiency. Log Koc, Log Dow, and Log Kow are the most significant predictors, and combination with MW and/or pKa often improved the reliability of the predictions. The best performing model for PhCs was composed of MW, Log Dow, and Log Koc (coefficient of determination-R2: 0.601; probability value-p < 0.05; root mean square error-RMSE: training set: 11%; test set: 27%). Log Kow and Log Koc for PCPs (R2: 0.644; p < 0.1; RMSE: training set: 14%; test set: 14%), and a combination of MW, Log Kow, and pKa for SHs (R2: 0.941; p < 0.1; RMSE: training set: 3%; test set: 15%) formed the plausible models for predicting the removal efficiency. Similarly, reasonably good combined models could be formed in the case of PhCs and SHs or PCPs and SHs, although their individual models were comparatively better. A novel decision support tool, named as REOCW-PCP, was developed to readily estimate the removal efficiency of EOCs, and facilitate the decision-making process.


Assuntos
Carbono , Áreas Alagadas , Reprodutibilidade dos Testes , Solo , Água
11.
J Environ Manage ; 290: 112627, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991767

RESUMO

Due to increasing anthropogenic activities, especially industry and transport, the fossil fuel demand and consumption have increased proportionally, causing serious environmental issues. This attracted researchers and scientists to develop new alternative energy sources. Therefore, this review covers the biofuel production potential and challenges related to various feedstocks and advances in process technologies. It has been concluded that the biofuels such as biodiesel, ethanol, bio-oil, syngas, Fischer-Tropsch H2, and methane produced from crop plant residues, micro- and macroalgae and other biomass wastes using thermo-bio-chemical processes are an eco-friendly route for an energy source. Biofuels production and their uses in industries and transportation considerably minimize fossil fuel dependence. Literature analysis showed that biofuels generated from energy crops and microalgae could be the most efficient and attractive process. Recent progress in the field of biofuels using genetic engineering has larger perspectives in commercial-scale production. However, its large-scale production is still challenging; hence, to resolve this problem, it is essential to convert biomass in biofuels by developing novel technology to increase biofuel production to fulfil the current and future energy demand.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Fontes Geradoras de Energia , Combustíveis Fósseis
12.
J Environ Manage ; 280: 111648, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33213993

RESUMO

Sewage sludge digestate is a valuable organic waste which can be used as fertilizer in soil bioremediation. Sewage sludge digestate is not only a good source of nutrients but is also rich in bacteria carrying alkB genes, which are involved in aliphatic hydrocarbons metabolism. Increase of alkB genes ratio in polluted soils has been observed to improve bioremediation efficiency. In this study, for the first time, the genetic potential of indigenous microorganisms of digestate to degrade petroleum products was assessed. The objectives were to study petroleum hydrocarbons (PHCs) removal together with shifts in soil taxa and changes in the concentration of alkB genes after digestate application. Initial alkB genes concentration in contaminated soils and digestate was 1.5% and 4.5%, respectively. During soil incubation with digestate, alkB genes percentage increased up to 11.5% and after the addition of bacteria immobilized onto biochar this value increased up to 60%. Application of digestate positively affected soil respiration and bacterial density, which was concomitant with enhanced PHCs degradation. Incubation of soil amended with digestate resulted in 74% PHCs decrease in 2 months, while extra addition of bacteria immobilized onto biochar increased this value up to 95%. The use of digestate affected the microbial community profiles by increasing initial bacterial density and diversity, including taxa containing recognized PHCs degraders. This study reveals the great potential of digestate as a soil amendment which additionally improves the abundance of alkB genes in petroleum contaminated soils.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Petróleo/análise , Esgotos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
13.
J Environ Manage ; 290: 112537, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33865159

RESUMO

The generation of huge amounts of food waste due to the increasing population is a serious global issue. The inadequate management of food waste and lack of proper handling approaches have created adverse negative impacts on the environment and the society. The use of traditional disposal (i.e. landfilling) and treatment (i.e. incineration and composting) methods are not considered to be efficient for managing food waste. Thus, anaerobic digestion (AD) has proven to be promising and cost-effective, as an alternative technology, for digesting and converting food waste into renewable energy and useful chemicals. However, mono-digestion of food waste suffers from process inhibition and instability which limit its efficiency. Adding biochar that has high buffering capacity and ensures optimum nutrient balance was shown to enhance biogas/methane production yields. This review reports on the physicochemical characteristics of food waste, the existing problems of food waste treatment in AD as well as the role of biochar amendments on the optimization of critical process parameters and its action mechanisms in AD, which could be a promising means of improving the AD performance. Also, this review provides insights regarding the selection of the desired/appropriate biochar characteristics, i.e. depending on the source of the feedstock and the pyrolysis temperature, and its role in enhancing biogas production and preventing the problem of process instability in the AD system. Finally, this review paper highlights the economic and environmental challenges as well as the future perspectives concerning the application of biochar amendments in AD.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Carvão Vegetal , Metano
14.
J Water Health ; 18(3): 253-291, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32589615

RESUMO

This paper presents a comprehensive and critical analysis of the removal of pharmaceuticals (PhCs), the governing physicochemical properties, and removal mechanisms in constructed wetlands (CWs). The average removal efficiency of the most widely studied 34 PhCs ranges from 21% to 93%, with the exception of one PhC that exhibited negative removal. Moreover, CWs are effective in significantly reducing the environmental risk caused by many PhCs. Based on risk assessment, 12 PhCs were classified under high risk category (oxytetracycline > ofloxacin > sulfamethoxazole > erythromycin > sulfadiazine > gemfibrozil > ibuprofen > acetaminophen > salicylic acid > sulfamethazine > naproxen > clarithromycin), which could be considered for regular monitoring, water quality standard formulation and control purposes. Biodegradation (aerobic and anaerobic) is responsible for the removal of the majority of PhCs, often in conjunction with other mechanisms (e.g., adsorption/sorption, plant uptake, and photodegradation). The physicochemical properties of molecules play a pivotal role in the elimination processes, and could serve as important predictors of removal. The correlation and multiple linear regression analysis suggest that organic carbon sorption coefficient (Log Koc), octanol-water distribution coefficient (Log Dow), and molecular weight form a good predictive linear regression model for the removal efficiency of PhCs (R2 = 0.65, P-value <0.05).


Assuntos
Preparações Farmacêuticas , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água , Áreas Alagadas , Biodegradação Ambiental , Comportamento de Redução do Risco
15.
J Environ Manage ; 270: 110818, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32507739

RESUMO

Conventional wastewater treatment plants remove phosphorus, which is captured in sewage sludge. Increasing attention is paid to suitable process pathways that allow recovery and recycling of phosphorus. One of the processes under investigation is acid leaching and recovery of phosphorus, but this requires considerable chemical additives, which could be avoided by stimulating acidification via microbiological processes. This study investigated phosphorus leaching from sewage sludge by biogenic sulfuric acid, using Acidithiobacillus thiooxidans. Sulfur supplementation and solid to liquid ratio were varied to examine how these factors affected phosphorus leaching yield. Chemical leaching by sulfuric acid from sewage sludge and thermally-treated sludge was conducted to compare with bioleaching from sewage sludge. Sewage sludge samples were collected from wastewater treatment plants in Ghent, Belgium, and Delft, The Netherlands. Both bioleaching and chemical leaching were conducted at laboratory scale using shake flask technique, and highest phosphorus leaching yield and time was determined using one-way ANOVA statistical tests. Biogenic sulfuric acid produced by A. thiooxidans extracted phosphorus from both sludge samples. The highest phosphorus leaching yield observed was 48 ± 0% for 17 days from Ghent samples and 57 ± 4% for 27 days from Delft samples with 5.0% (w/v) sulfur supplementation and 1.0% (w/v) solid to liquid ratio. Chemical leaching took shorter than bioleaching, but the leaching yield was lower, i.e. 41 ± 1% for 4 h from Ghent samples, 44 ± 1% for 1 h from Delft samples, 48 ± 1% for 1 h from thermally-treated Ghent samples and 51 ± 2% for 4 h from thermally-treated Delft samples. During phosphorus bioleaching, pH increase was observed during the early stage which hampered the activity of A. thiooxidans and therefore increased phosphorus leaching time. This study suggests that creating conditions for A. thiooxidans to overcome acid neutralizing capacity of sewage sludge is needed to extract phosphorus effectively.


Assuntos
Acidithiobacillus , Metais Pesados , Acidithiobacillus thiooxidans , Bélgica , Concentração de Íons de Hidrogênio , Países Baixos , Fósforo , Esgotos , Águas Residuárias
16.
J Environ Manage ; 238: 159-165, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30851554

RESUMO

The use of digestate as amendment for agricultural soils has already been proposed as an alternative to mineral fertilizers or undigested organic matter. However, little information is available concerning the effect of digestate atmospheric exposure on trace elements speciation and, consequently, on their mobility and bio-accessibility when digestate is stored in open tanks or handled before land spreading. In this study, we investigated at laboratory-scale the effect of digestate aeration on the distribution of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se and W using the diffusive gradients in thin films technique (DGT)-based fractionation. For this purpose, experiments were performed to assess the variation in distribution between the labile, soluble and particulate fractions over time in digested sewage sludge during passive and forced aeration. Results showed that aeration promoted a dissolution of Al, As, Co, Cr, Cu, Fe, Mn, Mo and Pb, suggesting a possible increase in their mobility that may likely occur during storage in open tanks or handling before land spreading. Labile elements' fraction increased only during forced aeration (except for Fe and Mn), suggesting that their short-term bio-accessibility can increase only after significant aeration as the one assumed to occur when land spreading takes place.


Assuntos
Oligoelementos , Fracionamento Químico , Monitoramento Ambiental , Esgotos , Solo
17.
J Environ Manage ; 211: 138-153, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29408062

RESUMO

Solid metalliferous wastes (sludges, dusts, residues, slags, red mud and tailing wastes) originating from ferrous and non-ferrous metallurgical industries are a serious environmental threat, when waste management practices are not properly followed. Metalliferous wastes generated by metallurgical industries are promising resources for biotechnological extraction of metals. These wastes still contain significant amounts of valuable non-ferrous metals, sometimes precious metals and also rare earth elements. Elemental composition and mineralogy of the metallurgical wastes is dependent on the nature of mining site and composition of primary ores mined. Most of the metalliferous wastes are oxidized in nature and contain less/no reduced sulfidic minerals (which can be quite well processed by biohydrometallurgy). However, application of biohydrometallurgy is more challenging while extracting metals from metallurgical wastes that contain oxide minerals. In this review, origin, elemental composition and mineralogy of the metallurgical solid wastes are presented. Various bio-hydrometallurgical processes that can be considered for the extraction of non-ferrous metals from metal bearing solid wastes are reviewed.


Assuntos
Biotecnologia , Metais , Gerenciamento de Resíduos , Metalurgia , Resíduos Sólidos
18.
J Environ Manage ; 219: 138-152, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29738933

RESUMO

Smelting activity by its very nature produces large amounts of metal-bearing waste, often called metallurgical slag(s). In the past, industry used to dispose of these waste products at dumping sites without the appropriate environmental oversight. Once there, ongoing biogeochemical processes affect the stability of the slags and cause the release of metallic contaminants. Rather than viewing metallurgical slags as waste, however, such deposits should be viewed as secondary metal resources. Metal bioleaching is a "green" treatment route for metallurgical slags, currently being studied under laboratory conditions. Metal-laden leachates obtained at the bioleaching stage have to be subjected to further recovery operations in order to obtain metal(s) of interest to achieve the highest levels of purity possible. This perspective paper considers the feasibility of the reuse of base-metal slags as secondary metal resources. Special focus is given to current laboratory bioleaching approaches and associated processing obstacles. Further directions of research for development of more efficient methods for waste slag treatment are also highlighted. The optimized procedure for slag treatment is defined as the result of this review and should include following steps: i) slag characterization (chemical and phase composition and buffering capacity) following the choice of initial pH, ii) the choice of particle size, iii) the choice of the liquid-to-solid ratio, iv) the choice of microorganisms, v) the choice of optimal nutrient supply (growth medium composition). An optimal combination of all these parameters will lead to efficient extraction and generation of metal-free solid residue.


Assuntos
Resíduos Industriais , Metalurgia , Resíduos , Conservação dos Recursos Naturais , Metais
19.
J Environ Manage ; 222: 325-337, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29864745

RESUMO

This study was undertaken to simulate experimentally the weathering of slags disposed nearby soil rhizosphere. The aim of the research was to differentiate the effect of pH and organics on slags dissolution as well as to indicate weathering sequence of phase components. The studied slags are mainly composed of Fe (34.5 wt%) and Si (17.9 wt%) and contain up to 3761 mg kg-1 of Cu and 3628 mg kg-1 of Zn. The main identified phases are fayalite and glass, whereas sulfides and metallic Cu are volumetrically minor. A 30 days long slag weathering experiment was carried out with artificial root exudates (43.7 mM) and demineralized water at initial pH = 3.5 and pH = 6.7. The highest metal release (up to 10.9% of Zn and 4.6% of Cu) was observed in ARE solution at initial pH 3.5. Dissolution of sulfides and fayalite was mainly driven by pH. Artificial root exudates enhance glass dissolution as compared to demineralized water regardless of initially fixed pH. Based on this study following weathering sequences are delineated: i) under ARE 3.5 conditions: silicates > glass > sulfides, ii) under DW 3.5 conditions: sulfides > silicates > glass, iii) under near-neutral conditions: sulfides > glass > silicates.


Assuntos
Cobre/química , Rizosfera , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Metais , Compostos Orgânicos , Tempo (Meteorologia)
20.
J Environ Manage ; 218: 209-219, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29680753

RESUMO

Fe(II)-mediated autotrophic denitrification in the presence of copper (Cu), nickel (Ni) and zinc (Zn) with four different microbial cultures was investigated in batch bioassays. In the absence of metals, complete nitrate removal and Fe(II) oxidation were achieved with a Thiobacillus-dominated mixed culture and Pseudogulbenkiania sp. 2002 after 7 d. A nitrate removal of 96 and 91% was observed with a pure culture of T. denitrificans and an activated sludge enrichment, respectively, after 10 d of incubation. Cu, Ni and Zn were then supplemented at an initial concentration of 5, 10, 20 and 40 mg Me/L. A decrease of approximately 50% of the soluble metal concentrations occurred in the first 4 d of denitrification, due to metal precipitation, co-precipitation, sorption onto iron (hydr)oxides, and probably sorption onto biomass. A higher sensitivity to metal toxicity was observed for the microbial pure cultures. Pseudogulbenkiania sp. 2002 was the least tolerant among the biomasses tested, resulting in only 6, 8 and 6% nitrate removal for the highest Cu, Ni and Zn concentrations, respectively. In contrast, the highest nitrate removal efficiency and specific rates were achieved with the Thiobacillus-dominated mixed culture, which better tolerated the presence of metals. Averagely, Cu resulted in the highest inhibition of nitrate removal, followed by Zn and Ni.


Assuntos
Desnitrificação , Metais Pesados/química , Processos Autotróficos , Cobre , Compostos Ferrosos , Níquel , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA