Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Faraday Discuss ; 208(0): 35-52, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29796544

RESUMO

New insights and successful use of computational catalysis are highlighted. This is within the context of remaining issues that prevent theoretical catalysis to be fully predictive of catalyst performance. A major challenge is to include in modelling studies the transient initiation as well as deactivation processes of the catalyst. We will illustrate this using as an example for solid acid catalysis, the alkylation process, and for transition metal catalysis, the Fischer-Tropsch reaction. For the alkylation reaction of isobutane and alkene, an important reaction for high octane gasoline, we will present a deactivation model. For the Fischer-Tropsch reaction, which converts synthesis gas into gasoline grade molecules, we discuss structural reorganization of the catalyst induced by reaction.

2.
Faraday Discuss ; 188: 199-226, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27108887

RESUMO

Density functional theory is used to examine the changes in electronic structure that occur during the oxygen evolution reaction (OER) catalyzed by active sites on three different surface terminations of Co3O4. These three active sites have reactive oxo species with differing degrees of coordination by Co cations - a µ(3)-oxo on the (311) surface, a µ(2)-oxo on the (110)-A surface, and an η-oxo on the (110)-B surface. The kinetically relevant step on all surfaces over a wide range of applied potentials is the nucleophilic addition of water to the oxo, which is responsible for formation of the O-O bond. The intrinsic reactivity of a site for this step is found to increase as the coordination of the oxo decreases with the µ(3)-oxo on the (311) surface being the least reactive and the η-oxo on the (110)-B surface being the most reactive. A detailed analysis of the electronic changes occurring during water addition on the three sites reveals that this trend is due to both a decrease in the attractive local Madelung potential on the oxo and a decrease in electron withdrawal from the oxo by Co neighbors. Applying a similar electronic structure analysis to the oxidation steps preceding water addition in the catalytic cycle shows that analogous electronic changes occur during this process, explaining a correlation observed between the oxidation potential of a site and its intrinsic reactivity for water addition. This concept is then used to specify criteria for the design of an optimal OER catalyst at a given applied potential.

3.
J Am Chem Soc ; 137(46): 14660-72, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26479891

RESUMO

Quantum chemical calculations and simulated kinetics were used to examine the structure sensitivity of the oxygen evolution reaction on several surface terminations of Co3O4. Active sites consisting of two adjacent Co(IV) cations connected by bridging oxos were identified on both the (001) and (311) surfaces. Formation of the O-O bond proceeds on these sites by nucleophilic attack of water on a bridging oxo. It was found that the relative turnover frequencies for the different sites are highly dependent on the overpotential, with the dual-Co site on the (311) surface being most active at medium overpotentials (0.46-0.77 V), where O-O bond formation by water addition is rate limiting. A similar dual-Co site on the (001) surface is most active at low overpotentials (<0.46 V), where O2 release is rate limiting, and a single-Co site on the (110) surface is most active at overpotentials that are high enough (>0.77 V) to form a significant concentration of highly reactive terminal Co(V)═O species. Two overpotential-dependent Sabatier relationships were identified based on the Brønsted basicity and redox potential of the active site, explaining the change in the active site with overpotential. The (311) dual-Co site that is most active in the medium overpotential range is consistent with recent experimental observations suggesting that a defect site is responsible for the observed oxygen evolution activity and that a modest concentration of superoxo intermediates is present on the surface. Importantly, we find that it is essential to consider the kinetics of the water addition and O2 release steps rather than only the thermodynamics.

4.
Phys Chem Chem Phys ; 17(19): 12486-91, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25751762

RESUMO

A computational study of the cooperative effect of a small four-atom Co oxide cluster supported on the TiO2 anatase (100) surface in the electrochemical water splitting reaction is presented. The results have been obtained including explicit solvent water molecules by means of Car-Parrinello MD simulations. Reaction steps in the catalytic cycle determined involve the formation of TiO2 surface hydroxyl groups as well as elementary reaction steps on the Co oxide cluster. Essential is the observation of O-O bond formation at the inter-phase of Co oxide particles and the TiO2 support.

5.
Phys Chem Chem Phys ; 17(34): 21810-8, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26134464

RESUMO

The understanding of the formation of silicate oligomers in the initial stage of zeolite synthesis is of fundamental scientific and technological importance. The use of different organic structure directing agents is known to be a key factor in the formation of different silicate species, and the final zeolite structure. Tetramethylammonium (TMA(+)), for example, is indispensable for the formation of the LTA zeolite type. However, the role of a TMA(+) template has not yet been elucidated at the molecular level. In this study, ab initio molecular dynamic simulations were combined with thermodynamic integration to arrive at an understanding of the role of TMA(+) in the formation of various silicate species, ranging from dimer to 4-ring. Free energy profiles show that trimer and 3-ring silicate are less favourable than other oligomers such as linear tetramer, branched tetramer and 4-ring structures. TMA(+) exhibits an important role in controlling the predominant species in solution via its coordination with silicate structures during the reaction process. This can explain that formation of D4R·8TMA crystals, as observed in experiment, is controlled by the single 4-ring formation step.

6.
Chemistry ; 20(23): 6915-26, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24753143

RESUMO

Density functional theory (DFT) calculations are used to explore water adsorption and activation on different α-Ga2O3 surfaces, namely (001), (100), (110), and (012). The geometries and binding energies of molecular and dissociative adsorption are studied as a function of coverage. The simulations reveal that dissociative water adsorption on all the studied low-index surfaces are thermodynamically favorable. Analysis of surface energies suggests that the most preferentially exposed surface is (012). The contribution of surface relaxation to the respective surface energies is significant. Calculations of electron local density of states indicate that the electron-energy band gaps for the four investigated surfaces appears to be less related to the difference in coordinative unsaturation of the surface atoms, but rather to changes in the ionicity of the surface chemical bonds. The electrochemical computation is used to investigate the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) on α-Ga2O3 surfaces. Our results indicate that the (100) and (110) surfaces, which have low stability, are the most favorable ones for HER and OER, respectively.

7.
Phys Chem Chem Phys ; 16(21): 10041-58, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24509610

RESUMO

Microkinetics simulations are presented on the intrinsic activity and selectivity of the Fischer-Tropsch reaction with respect to the formation of long chain oxygenated hydrocarbons. Two different chain growth mechanisms are compared: the carbide chain growth mechanism and the CO insertion chain growth mechanism. The microkinetics simulations are based on quantum-chemical data on reaction rate parameters of the elementary reaction steps of the Fischer-Tropsch reaction available in the literature. Because the overall rate constant of chain growth remains too low the CO insertion chain growth mechanism is not found to produce higher hydrocarbons, except for ethylene and acetaldehyde or the corresponding hydrogenated products. According to the carbide mechanism available quantum-chemical data are consistent with high selectivity to long chain oxygenated hydrocarbon production at low temperature. The anomalous initial increase with temperature of the chain growth parameter observed under such conditions is reproduced. It arises from the competition between the apparent rate of C-O bond activation to produce "CHx" monomers to be inserted into the growing hydrocarbon chain and the rate of chain growth termination. The microkinetics simulations data enable analysis of selectivity changes as a function of critical elementary reaction rates such as the rate of activation of the C-O bond of CO, the insertion rate of CO into the growing hydrocarbon chain or the rate constant of methane formation. Simulations show that changes in catalyst site reactivity affect elementary reaction steps differently. This has opposing consequences for oxygenate production selectivity, so an optimizing compromise has to be found. The simulation results are found to be consistent with most experimental data available today. It is concluded that Fischer-Tropsch type catalysis has limited scope to produce long chain oxygenates with high yield, but there is an opportunity to improve the yield of C2 oxygenates.

8.
Angew Chem Int Ed Engl ; 53(47): 12746-50, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25168456

RESUMO

Microkinetics simulations are presented based on DFT-determined elementary reaction steps of the Fischer-Tropsch (FT) reaction. The formation of long-chain hydrocarbons occurs on stepped Ru surfaces with CH as the inserting monomer, whereas planar Ru only produces methane because of slow CO activation. By varying the metal-carbon and metal-oxygen interaction energy, three reactivity regimes are identified with rates being controlled by CO dissociation, chain-growth termination, or water removal. Predicted surface coverages are dominated by CO, C, or O, respectively. Optimum FT performance occurs at the interphase of the regimes of limited CO dissociation and chain-growth termination. Current FT catalysts are suboptimal, as they are limited by CO activation and/or O removal.

9.
Phys Chem Chem Phys ; 15(4): 1123-9, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23223613

RESUMO

Silica oligomerization is the key reaction in zeolite synthesis. NaOH is a common additive in the zeolite synthesis that decreases the reaction rate of smaller silica oligomers and also affects the final structure of the zeolite. Here we report a study of the role of sodium in the initial stages of silica oligomerization. We performed ab initio molecular dynamics simulations using explicit aqueous solution in order to obtain the free energy profile and study the behavior of sodium during the reaction. Our study confirms that sodium decreases the reaction rates of oligomerization for smaller silica chains. Analysis of the molecular dynamics trajectories shows that sodium does not increase the reaction barriers by direct coordination to the silica. However, sodium is often present in the second solvation shell of the reactive atoms. Correlation between sodium presence in the first or the second shell of the reactive oxygen and a decrease in hydrogen bonding for that oxygen was found for the first reaction step. Therefore, the presence of sodium could contribute to an increase in reaction barriers for silica oligomerization by some rearrangement of the hydrogen bond network of water solution around the reactants.

10.
Phys Chem Chem Phys ; 15(7): 2268-72, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23303314

RESUMO

Using density functional theory (DFT) and thermodynamic considerations we studied the equilibrium shape of Pt nanoparticles (NPs) under electrochemical conditions. We found that at very high oxygen coverage, obtained at high electrode potentials, the experimentally-observed tetrahexahedral (THH) NPs consist of high-index (520) faces. Since high-index surfaces often show higher (electro-)chemical activity in comparison to their close-packed counterparts, the THH NPs can be promising candidates for various (electro-)catalytic applications.

11.
Phys Chem Chem Phys ; 14(34): 11969-73, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22847244

RESUMO

We present a lattice-gas kinetic Monte Carlo model to investigate the formation of silicate oligomers, their aggregation and the subsequent gelation process. In the early oligomerization stage, the 3-rings are metastable, 5-rings and 6-rings are formed in very small quantities, 4-rings are abundant species, linear and branched species are transformed into more compact structures. Results reveal that the gelation proceeds from 4-ring containing species. A significant amount of 5-rings and 6-rings, sharing Si with 4-ring, form in the aging stage. These reveal the formation mechanism of silicate rings and clusters during zeolite synthesis.

12.
Angew Chem Int Ed Engl ; 51(36): 9015-9, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22829559

RESUMO

Long carbon chains: Self-assembly of monomeric carbon intermediates into long-chain hydrocarbons on catalytically reactive surface was studied when full reversibility of the chain growth is included in the kinetic model. Using Brønsted-Evans-Polanyi relations, the maximum chain growth as a function of the surface reactivity is predicted.


Assuntos
Hidrocarbonetos/química , Monóxido de Carbono/química , Catálise , Hidrogênio/química , Cinética , Propriedades de Superfície
13.
J Am Chem Soc ; 133(17): 6613-25, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21486018

RESUMO

The mechanism of the initial stage of silicate oligomerization from solution is still not well understood. Here we use an off-lattice kinetic Monte Carlo (kMC) approach called continuum kMC to model silicate oligomerization in water solution. The parameters required for kMC are obtained from density functional theory (DFT) calculations. The evolution of silicate oligomers and their role in the oligomerization process are investigated. Results reveal that near-neutral pH favors linear growth, while a higher pH facilitates ring closure. The silicate oligomerization rate is the fastest at pH 8. The temperature is found to increase the growth rate and alter the pathway of oligomerization. The proposed pH and temperature-dependent mechanism should lead to strategies for the synthesis of silicate-based materials.

14.
Nat Commun ; 12(1): 7096, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876582

RESUMO

Some fundamental concepts of catalysis are not fully explained but are of paramount importance for the development of improved catalysts. An example is the concept of structure insensitive reactions, where surface-normalized activity does not change with catalyst metal particle size. Here we explore this concept and its relation to surface reconstruction on a set of silica-supported Ni metal nanoparticles (mean particle sizes 1-6 nm) by spectroscopically discerning a structure sensitive (CO2 hydrogenation) from a structure insensitive (ethene hydrogenation) reaction. Using state-of-the-art techniques, inter alia in-situ STEM, and quick-X-ray absorption spectroscopy with sub-second time resolution, we have observed particle-size-dependent effects like restructuring which increases with increasing particle size, and faster restructuring for larger particle sizes during ethene hydrogenation while for CO2 no such restructuring effects were observed. Furthermore, a degree of restructuring is irreversible, and we also show that the rate of carbon diffusion on, and into nanoparticles increases with particle size. We finally show that these particle size-dependent effects induced by ethene hydrogenation, can make a structure sensitive reaction (CO2 hydrogenation), structure insensitive. We thus postulate that structure insensitive reactions are actually apparently structure insensitive, which changes our fundamental understanding of the empirical observation of structure insensitivity.

15.
Biophys J ; 99(5): 1520-8, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20816064

RESUMO

Dilution of a fatty acid micellar solution at basic pH toward neutrality results in spontaneous formation of vesicles with a broad size distribution. However, when vesicles of a defined size are present before dilution, the size distribution of the newly formed vesicles is strongly biased toward that of the seed vesicles. This so-called matrix effect is believed to be a key feature of early life. Here we reproduced this effect for oleate micelles and seed vesicles of either oleate or dioleoylphosphatidylcholine. Fluorescence measurements showed that the vesicle contents do not leak out during the replication process. We hypothesized that the matrix effect results from vesicle fission induced by an imbalance of material across both leaflets of the vesicle upon initial insertion of fatty acids into the outer leaflet of the seed vesicle. This was supported by experiments that showed a significant increase in vesicle size when the equilibration of oleate over both leaflets was enhanced by either slowing down the rate of fatty acid addition or increasing the rate of fatty acid transbilayer movement. Coarse-grained molecular-dynamics simulations showed excellent agreement with the experimental results and provided further mechanistic details of the replication process.


Assuntos
Ácidos Graxos/química , Simulação de Dinâmica Molecular , Lipossomas Unilamelares/química , Transporte Biológico , Membrana Celular/química , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Micelas , Conformação Molecular , Permeabilidade , Lipossomas Unilamelares/metabolismo
16.
Acc Chem Res ; 42(1): 57-66, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-18986176

RESUMO

The burgeoning field of nanoscience has stimulated an intense interest in properties that depend on particle size. For transition metal particles, one important property that depends on size is catalytic reactivity, in which bonds are broken or formed on the surface of the particles. Decreased particle size may increase, decrease, or have no effect on the reaction rates of a given catalytic system. This Account formulates a molecular theory of the structure sensitivity of catalytic reactions based on the computed activation energies of corresponding elementary reaction steps on transition metal surfaces. Recent progress in computational catalysis, surface science, and nanochemistry has significantly improved our theoretical understanding of particle-dependent reactivity changes in heterogeneous catalytic systems. Reactions that involve the cleavage or formation of molecular pi-bonds, as in CO or N(2), must be distinguished from reactions that involve the activation of sigma-bonds, such as CH bonds in methane. The activation of molecular pi-bonds requires a reaction center with a unique configuration of several metal atoms and step-edge sites, which can physically not be present on transition metal particles less than 2 nm. This is called class I surface sensitivity, and the rate of reaction will sharply decrease when particle size decreases below a critical size. The activation of sigma chemical bonds, in which the activation proceeds at a single metal atom, displays a markedly different size relationship. In this case, the dependence of reaction rate on coordinative unsaturation of reactive surface atoms is large in the forward direction of the reaction, but the activation energy of the reverse recombination reaction will not change. Dissociative adsorption with cleavage of a CH bond is strongly affected by the presence of surface atoms at the particle edges. This is class II surface sensitivity, and the rate will increase with decreasing particle size. Reverse reactions such as hydrogenation typically show particle-size-independent behavior. The rate-limiting step for these class III reactions is the recombination of an adsorbed hydrogen atom with the surface alkyl intermediate and the formation of a sigma-type bond. Herein is our molecular theory explaining the three classes of structure sensitivity. We describe how reactions with rates that are independent of particle size and reactions with a positive correlation between size and rate are in fact complementary phenomena. The elucidation of a complete theory explaining the size dependence of transition metal catalysts will assist in the rational design of new catalytic systems and accelerate the evolution of the field of nanotechnology.

17.
Chemistry ; 16(31): 9340-8, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20607771

RESUMO

Large zeolite crystals have been used as model systems for the investigation of diffusion and catalytic reactivity phenomena in microporous host materials for at least two decades. However, their potential in assisting the detection of elusive reactive intermediates appears to have been underestimated. Herein, we show that a complementary use of vibrational and optical spectroscopy in combination with theoretical calculations allows for the unambiguous identification of transient carbocationic species generated upon the acid-catalyzed oligomerization of styrene derivatives within zeolite H-ZSM-5. Thanks to the mediated diffusion of the reactant in the large H-ZSM-5 crystals and minimal external surface the reaction intermediates can be accumulated within zeolite micropores in sufficient concentrations to allow their detection by synchrotron-based IR microspectroscopy. The UV/Vis and IR spectra display strong polarization dependence of on the molecular alignment of the dimeric styrene carbocations imposed by the zeolite channels and cages that can be rationalized in terms of the electronic and vibrational transitions of the intrazeolite carbocations. Based on these findings, a molecular-level picture of the macroscopic arrangement of the reaction intermediates confined within microporous zeolite matrices can be devised.

18.
Langmuir ; 26(21): 16339-48, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20919687

RESUMO

Three different pathways toward CO formation from adsorbed CH and O are compared by quantum-chemical density functional theory (DFT) calculations for planar and stepped Rh surfaces. The conventional pathway competes with the pathway involving a formyl (CHO) species. This holds for both types of surfaces. The barrier for carbon-oxygen bond formation for the planar surface (180 kJ/mol) is substantially higher than that for the stepped surface (90 kJ/mol). The reaction path through intermediate formyl formation competes with direct formation of CO from recombination via adsorbed C and O atoms. Calculations are used as a basis for the analysis of the overall kinetics of the methane steam reforming reaction as a function of the particle size and the metal.


Assuntos
Monóxido de Carbono/síntese química , Metano/química , Ródio/química , Adsorção , Monóxido de Carbono/química , Gases/química , Simulação de Dinâmica Molecular , Tamanho da Partícula , Teoria Quântica , Propriedades de Superfície
19.
Inorg Chem ; 49(21): 10081-91, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20929259

RESUMO

The structural and coordination properties of complexes formed upon the interaction of copper(II) and chromium(II) chlorides with dialkylimidazolium chloride (RMIm(+)Cl(-)) ionic liquids and glucose are studied by a combination of density functional theory (DFT) calculations and X-ray absorption spectroscopy (XAS). In the absence of the carbohydrate substrate, isolated mononuclear four-coordinated MeCl(4)(2-) species (Me = Cu, Cr) dominate in the ionic liquid solution. The organic part of the ionic liquid does not directly interact with the metal centers. The interactions between the RMIm(+) cations and the anionic metal chloride complexes are limited to hydrogen bonding with the basic Cl(-) ligands and the overall electrostatic stabilization of the anionic metal complexes. Exchange of Cl(-) ligands by a hydroxyl group of glucose is only favorable for CrCl(4)(2-). For Cu(2+) complexes, the formation of hydrogen bonded complexes between CuCl(4)(2-) and glucose is preferred. No preference for the coordination of metal chloride species to specific hydroxyl group of the carbohydrate is found. The formation of binuclear metal chloride complexes is also considered. The reactivity and selectivity patterns of the Lewis acid catalyzed reactions of glucose are discussed in the framework of the obtained results.


Assuntos
Cloreto de Cádmio/química , Cobre/química , Glucose/química , Líquidos Iônicos/química , Estrutura Molecular , Teoria Quântica , Espectroscopia por Absorção de Raios X
20.
Phys Chem Chem Phys ; 12(24): 6330-2, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20532417

RESUMO

An optimum reaction path for CO activation is an important issue in the Fischer-Tropsch synthesis for the production of liquid hydrocarbons from syngas. In the present theoretical study, we show that the CO activation on open Ru and Co surfaces consisting of active six-fold sites is initiated through the carbide mechanism instead of the hydrogen assisted pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA