Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pflugers Arch ; 475(11): 1265-1281, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37656229

RESUMO

Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen availability (hypoxia). Compared with long-term hypoxia, the mechanistic in vivo response to acute hypoxia remains elusive. Therefore, we aimed to provide an integrated description of the Musculus gastrocnemius response to acute hypoxia. Fasted male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six weeks, were exposed to 12% O2 normobaric hypoxia or normoxia (20.9% O2) for six hours (n = 12 per group). Whole-body energy metabolism and the transcriptome response of the M. gastrocnemius were analyzed and confirmed by acylcarnitine determination and Q-PCR. At the whole-body level, six hours of hypoxia reduced energy expenditure, increased blood glucose and tended to decreased the respiratory exchange ratio (RER). Whole-genome transcriptome analysis revealed upregulation of forkhead box-O (FOXO) signalling, including an increased expression of tribbles pseudokinase 3 (Trib3). Trib3 positively correlated with blood glucose levels. Upregulated carnitine palmitoyltransferase 1A negatively correlated with the RER, but the significantly increased in tissue C14-1, C16-0 and C18-1 acylcarnitines supported that ß-oxidation was not regulated. The hypoxia-induced FOXO activation could also be connected to altered gene expression related to fiber-type switching, extracellular matrix remodeling, muscle differentiation and neuromuscular junction denervation. Our results suggest that a six-hour exposure of obese mice to 12% O2 normobaric hypoxia impacts M. gastrocnemius via FOXO1, initiating alterations that may contribute to muscle remodeling of which denervation is novel and warrants further investigation. The findings support an early role of hypoxia in tissue alterations in hypoxia-associated conditions such as aging and obesity.

2.
J Nutr ; 153(12): 3448-3457, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858726

RESUMO

BACKGROUND: Prolonged lactation provides substantial health benefits, possibly because of galactose as part of milk sugar lactose. Isocaloric replacement of dietary glucose [16 energy%(en%)] with galactose within a normal diet (64en% carbohydrates) during a 3-wk postweaning period provided substantial benefits on short- and long-term physiologic and metabolic parameters at the whole-body level and liver in female mice, which might be attributable to intestinal function. OBJECTIVES: This study aimed to investigate if partial dietary replacement of glucose with galactose alters intestinal metabolism underlying hepatic health effects. METHODS: Proximal intestinal mucosa gene profiles in female mice were analyzed using RNAseq technology, validated, and correlated with hepatic health parameters. RESULTS: Transcriptome analysis revealed that the presence of galactose primarily affected the pathways involved in energy metabolism. A consistently higher expression was observed in the subset of mitochondrial transcripts (78 of 80, all P.adj < 0.1). Oxidative phosphorylation (OXPHOS) represented the most upregulated process (all top 10 pathways) independent of the total mitochondrial mass (P = 0.75). Moreover, galactose consistently upregulated carbohydrate metabolism pathways, specifically glycolysis till acetyl-CoA production and fructose metabolism. Also, the expression of transcripts involved in these pathways was negatively correlated with circulating serum amyloid A3 protein, a marker of hepatic inflammation [R (-0.61, -0.5), P (0.002, 0.01)]. Accordingly, CD163+ cells were decreased in the liver. Additionally, the expression of key fructolytic enzymes in the small intestinal mucosa was negatively correlated with triglyceride accumulation in the liver [R (-0.45, -0.4), P (0.03, 0.05)]. CONCLUSIONS: To our knowledge, our results show for the first time the role of galactose as an OXPHOS activator in vivo. Moreover, the concept of intestinal cells acting as the body's metabolic gatekeeper is strongly supported, as they alter substrate availability and thereby contribute to the maintenance of metabolic homeostasis, protecting other organs, as evidenced by their potential ability to shield the liver from the potentially detrimental effects of fructose.


Assuntos
Galactose , Fosforilação Oxidativa , Camundongos , Feminino , Animais , Galactose/farmacologia , Dieta , Glucose/metabolismo , Fígado/metabolismo , Mucosa Intestinal/metabolismo , Frutose
3.
Brain ; 145(1): 45-63, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34849584

RESUMO

Mitochondria are small cellular constituents that generate cellular energy (ATP) by oxidative phosphorylation (OXPHOS). Dysfunction of these organelles is linked to a heterogeneous group of multisystemic disorders, including diabetes, cancer, ageing-related pathologies and rare mitochondrial diseases. With respect to the latter, mutations in subunit-encoding genes and assembly factors of the first OXPHOS complex (complex I) induce isolated complex I deficiency and Leigh syndrome. This syndrome is an early-onset, often fatal, encephalopathy with a variable clinical presentation and poor prognosis due to the lack of effective intervention strategies. Mutations in the nuclear DNA-encoded NDUFS4 gene, encoding the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) of complex I, induce 'mitochondrial complex I deficiency, nuclear type 1' (MC1DN1) and Leigh syndrome in paediatric patients. A variety of (tissue-specific) Ndufs4 knockout mouse models were developed to study the Leigh syndrome pathomechanism and intervention testing. Here, we review and discuss the role of complex I and NDUFS4 mutations in human mitochondrial disease, and review how the analysis of Ndufs4 knockout mouse models has generated new insights into the MC1ND1/Leigh syndrome pathomechanism and its therapeutic targeting.


Assuntos
Complexo I de Transporte de Elétrons , Doença de Leigh , Doenças Mitocondriais , Animais , Complexo I de Transporte de Elétrons/genética , Humanos , Doença de Leigh/genética , Camundongos , Camundongos Knockout , Doenças Mitocondriais/genética , Fosforilação Oxidativa
4.
Eur J Nutr ; 62(3): 1093-1107, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36534178

RESUMO

To summarize current knowledge and gaps regarding the role of postprandial glycaemic response in the paediatric population, a workshop was organized in June 2021 by the European branch of the International Life Science Institute (ILSI). This virtual event comprised of talks given by experts followed by in-depth discussions in breakout sessions with workshop participants. The main pre-specified topics addressed by the workshop organizing committee to the invited speakers and the workshop participants were: (1) the role of glycaemic responses for paediatric health, based on mechanistic insights from animal and human data, and long-term evidence from observational and intervention studies in paediatric populations, and (2) changes in metabolism and changes in dietary needs from infancy to adolescence. Each talk as well as the discussions were summarised, including the main identified research gaps. The workshop led to the consensus on the crucial role on health of postprandial glycaemic response in paediatric population. However, a lack of scientific data has been identified regarding detailed glucose and insulin profiles in response to foods commonly consumed by paediatric populations, as well as a lack of long-term evidence including the need for suitable predictors during childhood and adolescence to anticipate health effects during adulthood.


Assuntos
Glicemia , Dieta , Adolescente , Humanos , Criança , Adulto , Glicemia/metabolismo , Glucose , Alimentos , Insulina , Período Pós-Prandial , Índice Glicêmico
5.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142131

RESUMO

Short-term post-weaning nutrition can result in long-lasting effects in later life. Partial replacement of glucose by galactose in the post-weaning diet showed direct effects on liver inflammation. Here, we examined this program on body weight, body composition, and insulin sensitivity at the adult age. Three-week-old female C57BL/6JRccHsd mice were fed a diet with glucose plus galactose (GAL; 16 energy% (en%) each) or a control diet with glucose (GLU; 32 en%) for three weeks, and afterward, both groups were given the same high-fat diet (HFD). After five weeks on a HFD, an oral glucose tolerance test was performed. After nine weeks on a HFD, energy metabolism was assessed by indirect calorimetry, and fasted mice were sacrificed fifteen minutes after a glucose bolus, followed by serum and tissue analyses. Body weight and body composition were not different between the post-weaning dietary groups, during the post-weaning period, or the HFD period. Glucose tolerance and energy metabolism in adulthood were not affected by the post-weaning diet. Serum adiponectin concentrations were significantly higher (p = 0.02) in GAL mice while insulin, leptin, and insulin-like growth factor 1 concentrations were not affected. Expression of Adipoq mRNA was significantly higher in gonadal white adipose tissue (gWAT; p = 0.03), while its receptors in the liver and skeletal muscles remained unaffected. Irs2 expression was significantly lower in skeletal muscles (p = 0.01), but not in gWAT or Irs1 expression (in both tissues). Gene expressions of inflammatory markers in gWAT and the liver were also not affected. Conclusively, galactose in the post-weaning diet significantly improved circulating adiponectin concentrations and reduced skeletal muscle Irs2 expression in adulthood without alterations in fat mass, glucose tolerance, and inflammation.


Assuntos
Adiponectina , Resistência à Insulina , Adiponectina/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Feminino , Galactose/metabolismo , Glucose/metabolismo , Inflamação/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Desmame
6.
BMC Bioinformatics ; 22(1): 574, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34839828

RESUMO

BACKGROUND: Several computational methods have been developed that integrate transcriptomics data with genome-scale metabolic reconstructions to increase accuracy of inferences of intracellular metabolic flux distributions. Even though existing methods use transcript abundances as a proxy for enzyme activity, each method uses a different hypothesis and assumptions. Most methods implicitly assume a proportionality between transcript levels and flux through the corresponding function, although these proportionality constant(s) are often not explicitly mentioned nor discussed in any of the published methods. E-Flux is one such method and, in this algorithm, flux bounds are related to expression data, so that reactions associated with highly expressed genes are allowed to carry higher flux values. RESULTS: Here, we extended E-Flux and systematically evaluated the impact of an assumed proportionality constant on model predictions. We used data from published experiments with Escherichia coli and Saccharomyces cerevisiae and we compared the predictions of the algorithm to measured extracellular and intracellular fluxes. CONCLUSION: We showed that detailed modelling using a proportionality constant can greatly impact the outcome of the analysis. This increases accuracy and allows for extraction of better physiological information.


Assuntos
Fenômenos Bioquímicos , Modelos Biológicos , Escherichia coli/genética , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/genética , Transcriptoma
7.
FASEB J ; 34(7): 9003-9017, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32474969

RESUMO

Calorie restriction during gestation in rats has long-lasting adverse effects in the offspring. It induces metabolic syndrome-related alterations, which are partially reversed by leptin supplementation during lactation. We employed these conditions to identify transcript-based nutrient sensitive biomarkers in peripheral blood mononuclear cells (PBMCs) predictive of later adverse metabolic health. The best candidate was validated in humans. Transcriptome analysis of PBMCs from adult male Wistar rats of three experimental groups was performed: offspring of control dams (CON), and offspring of 20% calorie-restricted dams during gestation without (CR) and with leptin supplementation throughout lactation (CR-LEP). The expression of 401 genes was affected by gestational calorie restriction and reversed by leptin. The changes preceded metabolic syndrome-related phenotypic alterations. Of these genes, Npc1 mRNA levels were lower in CR vs CON, and normalized to CON in CR-LEP. In humans, NPC1 mRNA levels in peripheral blood cells (PBCs) were decreased in subjects with mildly impaired metabolic health compared to healthy subjects. Therefore, a set of potential transcript-based biomarkers indicative of a predisposition to metabolic syndrome-related alterations were identified, including NPC1, which was validated in humans. Low NPC1 transcript levels in PBCs are a candidate biomarker of increased risk for impaired metabolic health in humans.


Assuntos
Biomarcadores/sangue , Regulação da Expressão Gênica no Desenvolvimento , Leucócitos Mononucleares/metabolismo , Doenças Metabólicas/diagnóstico , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transcriptoma , Animais , Restrição Calórica , Modelos Animais de Doenças , Feminino , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Gravidez , Ratos , Ratos Wistar
8.
J Nutr ; 149(7): 1140-1148, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076770

RESUMO

BACKGROUND: Duration of breastfeeding is positively associated with decreased adiposity and increased metabolic health in later life, which might be related to galactose. OBJECTIVE: The aim of this study was to investigate if partial replacement of glucose with galactose in the postweaning diet had a metabolic programming effect. METHODS: Male and female mice (C57BL/6JRccHsd) received an isocaloric diet (16 energy% fat; 64 energy% carbohydrates; 20 energy% protein) with either glucose (32 energy%) (GLU) or glucose + galactose (GLU + GAL, 16 energy% each) for 3 wk postweaning. Afterwards, all mice were switched to the same 40 energy% high-fat diet (HFD) for 9 wk to evaluate potential programming effects in an obesogenic environment. Data were analyzed within sex. RESULTS: Female body weight (-14%) and fat mass (-47%) were significantly lower at the end of the HFD period (both P < 0.001) among those fed GLU + GAL than among those fed GLU; effects in males were in line with these findings but nonsignificant. Food intake was affected in GLU + GAL-fed females (+8% on postweaning diet, -9% on HFD) compared with GLU-fed females, but not for hypothalamic transcript levels at endpoint. Also, in GLU + GAL-fed females, serum insulin concentrations (-48%, P  < 0.05) and the associated homeostasis model assessment of insulin resistance (HOMA-IR) were significantly lower ( P < 0.05) at endpoint, but there were no changes in pancreas morphology. In GLU + GAL-fed females, expression of insulin receptor substrate 2 (Irs2) (-27%, P  < 0.01 ; -44%, P  < 0.001) and the adipocyte size markers leptin (Lep) (-40%, P  < 0.05; -63% , P  < 0.05) and mesoderm-specific transcript homolog protein (Mest) (-80%, P < 0.05; -72%, P  < 0.05) was lower in gonadal and subcutaneous white adipose tissue (WAT), respectively. Expression of insulin receptor substrate1 (Irs1) (-24%, P  < 0.05) was only lower in subcutaneous WAT in GLU + GAL-fed females. CONCLUSIONS: Partial replacement of glucose with galactose, resulting in a 1:1 ratio mimicking lactose, in a 3-wk postweaning diet lowered body weight, adiposity, HOMA-IR, and expression of WAT insulin signaling in HFD-challenged female mice in later life. This suggests that prolonged galactose intake may improve metabolic and overall health in later life.


Assuntos
Adiposidade , Dieta Hiperlipídica/efeitos adversos , Galactose/administração & dosagem , Glucose/administração & dosagem , Fatores Sexuais , Desmame , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
FASEB J ; 29(4): 1314-28, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25491309

RESUMO

Recent studies on mouse and human skeletal muscle (SM) demonstrated the important link between mitochondrial function and the cellular metabolic adaptation. To identify key compensatory molecular mechanisms in response to chronic mitochondrial distress, we analyzed mice with ectopic SM respiratory uncoupling in uncoupling protein 1 transgenic (UCP1-TG) mice as model of muscle-specific compromised mitochondrial function. Here we describe a detailed metabolic reprogramming profile associated with mitochondrial perturbations in SM, triggering an increased protein turnover and amino acid metabolism with induced biosynthetic serine/1-carbon/glycine pathway and the longevity-promoting polyamine spermidine as well as the trans-sulfuration pathway. This is related to an induction of NADPH-generating pathways and glutathione metabolism as an adaptive mitohormetic response and defense against increased oxidative stress. Strikingly, consistent muscle retrograde signaling profiles were observed in acute stress states such as muscle cell starvation and lipid overload, muscle regeneration, and heart muscle inflammation, but not in response to exercise. We provide conclusive evidence for a key compensatory stress-signaling network that preserves cellular function, oxidative stress tolerance, and survival during conditions of increased SM mitochondrial distress, a metabolic reprogramming profile so far only demonstrated for cancer cells and heart muscle.


Assuntos
Glicina/metabolismo , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Serina/metabolismo , Animais , Sobrevivência Celular/fisiologia , Hormese , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Redes e Vias Metabólicas , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Proteínas Musculares/metabolismo , Estresse Oxidativo , Transdução de Sinais , Transcriptoma , Proteína Desacopladora 1
10.
Biochim Biophys Acta ; 1841(2): 267-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24295779

RESUMO

Non-alcoholic fatty liver disease (NAFLD) accompanies obesity and insulin resistance. Recent meta-analysis suggested omega-3 polyunsaturated fatty acids DHA and EPA to decrease liver fat in NAFLD patients. Antiinflammatory, hypolipidemic, and insulin-sensitizing effects ofDHA/EPA depend on their lipid form, with marine phospholipids showing better efficacy than fish oils. We characterized the mechanisms underlying beneficial effects of DHA/EPA phospholipids, alone or combined with an antidiabetic drug, on hepatosteatosis. C57BL/6N mice were fed for 7 weeks an obesogenic high-fat diet (cHF) or cHF-based interventions: (i) cHF supplemented with phosphatidylcholine-rich concentrate from herring (replacing 10% of dietary lipids; PC), (ii) cHF containing rosiglitazone (10 mg/kg diet; R), or (iii) PC + R. Metabolic analyses, hepatic gene expression and lipidome profiling were performed. Results showed that PC and PC + R prevented cHlF-induced weight gain and glucose intolerance, while all interventions reduced abdominal fat and plasma triacylglycerols. PC and PC + R also lowered hepatic and plasma cholesterol and reduced hepatosteatosis. Microarray analysis revealed integrated downregulation of hepatic lipogenic and cholesterol biosynthesis pathways by PC, while R-induced lipogenesis was fully counteracted in PC + R Gene expression changes in PC and PC + R were associated with preferential enrichment of hepatic phosphatidylcholine and phosphatidylethanolamine fractions by DHA/EPA. The complex downregulation of hepatic lipogenic and cholesterol biosynthesis genes and the antisteatotic effects were unique to DHA/EPA-containing phospholipids, since they were absent in mice fed soy-derived phosphatidylcholine. Thus, inhibition of lipid and cholesterol biosynthesis associated with potent antisteatotic effects in the liver in response to DHA/EPA-containing phospholipids support their use in NAFLD prevention and treatment.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Fígado Gorduroso/prevenção & controle , Fosfolipídeos/farmacologia , Animais , Vias Biossintéticas/efeitos dos fármacos , Colesterol/biossíntese , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica , Triglicerídeos/biossíntese
11.
Pflugers Arch ; 467(6): 1179-93, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24974902

RESUMO

Challenge tests stress homeostasis and may reveal deviations in health that remain masked under unchallenged conditions. Ideally, challenge tests are non-invasive and applicable in an early phase of an animal experiment. Oxygen restriction (OxR; based on ambient, mild normobaric hypoxia) is a non-invasive challenge test that measures the flexibility to adapt metabolism. Metabolic inflexibility is one of the hallmarks of the metabolic syndrome. To test whether OxR can be used to reveal early diet-induced health effects, we exposed mice to a low-fat (LF) or high-fat (HF) diet for only 5 days. The response to OxR was assessed by calorimetric measurements, followed by analysis of gene expression in liver and epididymal white adipose tissue (eWAT) and serum markers for e.g. protein glycation and oxidation. Although HF feeding increased body weight, HF and LF mice did not differ in indirect calorimetric values under normoxic conditions and in a fasting state. Exposure to OxR; however, increased oxygen consumption and lipid oxidation in HF mice versus LF mice. Furthermore, OxR induced gluconeogenesis and an antioxidant response in the liver of HF mice, whereas it induced de novo lipogenesis and an antioxidant response in eWAT of LF mice, indicating that HF and LF mice differed in their adaptation to OxR. OxR also increased serum markers of protein glycation and oxidation in HF mice, whereas these changes were absent in LF mice. Cumulatively, OxR is a promising new method to test food products on potential beneficial effects for human health.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Hipóxia/metabolismo , Metabolismo dos Lipídeos , Oxigênio/metabolismo , Tecido Adiposo/metabolismo , Animais , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Consumo de Oxigênio , Produtos Finais de Degradação Proteica/metabolismo
12.
Am J Physiol Endocrinol Metab ; 306(5): E469-82, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24347058

RESUMO

UCP1-Tg mice with ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) are a model of improved substrate metabolism and increased longevity. Analysis of myokine expression showed an induction of fibroblast growth factor 21 (FGF21) in SM, resulting in approximately fivefold elevated circulating FGF21 in UCP1-Tg mice. Despite a reduced muscle mass, UCP1-Tg mice showed no evidence for a myopathy or muscle autophagy deficiency but an activation of integrated stress response (ISR; eIF2α/ATF4) in SM. Targeting mitochondrial function in vitro by treating C2C12 myoblasts with the uncoupler FCCP resulted in a dose-dependent activation of ISR, which was associated with increased expression of FGF21, which was also observed by treatment with respiratory chain inhibitors antimycin A and myxothiazol. The cofactor required for FGF21 action, ß-klotho, was expressed in white adipose tissue (WAT) of UCP1-Tg mice, which showed an increased browning of WAT similar to what occurred in altered adipocyte morphology, increased brown adipocyte markers (UCP1, CIDEA), lipolysis (HSL phosphorylation), and respiratory capacity. Importantly, treatment of primary white adipocytes with serum of transgenic mice resulted in increased UCP1 expression. Additionally, UCP1-Tg mice showed reduced body length through the suppressed IGF-I-GH axis and decreased bone mass. We conclude that the induction of FGF21 as a myokine is coupled to disturbance of mitochondrial function and ISR activation in SM. FGF21 released from SM has endocrine effects leading to increased browning of WAT and can explain the healthy metabolic phenotype of UCP1-Tg mice. These results confirm muscle as an important endocrine regulator of whole body metabolism.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Composição Corporal/fisiologia , Densidade Óssea/fisiologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Canais Iônicos/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/genética , Músculo Esquelético/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fosforilação , Desacopladores/farmacologia , Proteína Desacopladora 1
13.
Mol Nutr Food Res ; 68(1): e2300470, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985953

RESUMO

SCOPE: Human milk (HM) is considered optimal nutrition for infants, beneficially programming adult health outcomes including reduced obesity risk. Early life exposure to infant formula with lipid droplets closely resembling the structural properties of HM lipid globules (Nuturis) attenuated white adipose tissue (WAT) accumulation in mice upon adult western-style diet (WSD) feeding. Here, the study aims to elucidate underlying mechanisms. METHODS AND RESULTS: Mice are raised on control or Nuturis diets between postnatal days 16-42 followed by either standard diet or WSD for 16 weeks. While the adult body composition of mice on a standard diet is not significantly affected, Nuturis reduced adiposity in mice on WSD. Morphologically, mean adipocyte size is reduced in Nuturis-raised mice, independent of adult diet exposure, and WAT macrophage content is reduced, albeit not significantly. Transcriptomics of epididymal WAT indicate potential beneficial effects on energy metabolism and macrophage function by Nuturis. CONCLUSION: Reduced adult adiposity by early life exposure to Nuturis appears to be associated with smaller adipocytes and alterations in WAT immune and energy metabolism. These results suggest that early modulation of WAT structure and/or function may contribute to the protective programming effects of the early-life Nuturis diet on later-life adiposity.


Assuntos
Gotículas Lipídicas , Fosfolipídeos , Lactente , Humanos , Camundongos , Animais , Fosfolipídeos/metabolismo , Gotículas Lipídicas/metabolismo , Tecido Adiposo/metabolismo , Obesidade/prevenção & controle , Obesidade/metabolismo , Dieta Ocidental , Imunidade , Tecido Adiposo Branco/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
14.
Exp Physiol ; 98(5): 1053-62, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23243145

RESUMO

Understanding body weight regulation is essential to fight obesity. Mouse studies, using different types of diets, showed conflicting results in terms of body weight persistence after changing from an ad libitum high-fat diet to an ad libitum low-fat diet. In this study, we questioned specifically whether the energy content of the diet has a lasting effect on energy balance and body weight, using multiple switches and two purified diets with a different fat-to-sugar ratio, but otherwise identical ingredients. Young-adult obesity-prone male C57BL/6J mice were fed single or double switches of semi-purified diets with either 10 energy % (en%) fat (LF) or 40en% fat (HF), with starch replaced by fat, while protein content remained equal. After none, one or two dietary changes, energy metabolism was assessed at 5, 14 and 19 weeks. We observed no systematic continuous compensation in diet and energy intake when returning to LF after HF consumption. Body weight, white adipose tissue mass and histology, serum metabolic parameters, energy expenditure and substrate usage all significantly reflected the current diet intake, independent of dietary changes. This contrasts with studies that used diets with different ingredients and showed persistent effects of dietary history on body weight, suggesting diet-dependent metabolic set points. We conclude that body weight and metabolic parameters 'settle', based on current energetic input and output. This study also highlights the importance of considering the choice of diet in physiological and metabolic intervention studies.


Assuntos
Peso Corporal/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Tecido Adiposo Branco/patologia , Animais , Calorimetria , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia
15.
Mol Nutr Food Res ; 67(4): e2200503, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564895

RESUMO

SCOPE: Peripheral blood mononuclear cells (PBMC) provide a useful and minimally invasive source of biomarkers. Here to identify PBMC transcriptomic biomarkers predictive of metabolic impairment related to increased adiposity is aimed. METHODS AND RESULTS: The study analyzed the global PBMC transcriptome in metabolically healthy (normoglycemic) volunteers with overweight-obesity (OW-OB, n = 12), and in subjects with metabolically obese normal-weight (MONW, n = 5) phenotype, in comparison to normal-weight (NW, n = 12) controls. The study identifies 1072 differentially expressed genes (DEGs) in OW-OB versus NW and 992 in MONW versus NW. Hierarchical clustering of the top 100 DEGs clearly distinguishes OW-OB and MONW from NW. Remarkably, the OW-OB and MONW phenotypes share 257 DEGs regulated in the same direction. The top up-regulated gene CXCL8, coding for interleukin 8, with a role in obesity-related pathologies, is of special interest as a potential marker for predicting increased metabolic risk. CXCL8 expression is increased mainly in the MONW group and correlated directly with C-reactive protein levels. CONCLUSIONS: PBMC gene expression analysis of CXCL8 or a pool of DEGs may be used to identify early metabolic risk in an apparently healthy population regardless of their BMI, i.e., subjects with OW-OB or MONW phenotype and to apply adequate and personalized nutritional preventive strategies.


Assuntos
Leucócitos Mononucleares , Sobrepeso , Humanos , Sobrepeso/metabolismo , Leucócitos Mononucleares/metabolismo , Transcriptoma , Obesidade/metabolismo , Biomarcadores , Perfilação da Expressão Gênica , Índice de Massa Corporal
16.
Anal Bioanal Chem ; 402(3): 1389-92, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22119999

RESUMO

Flavonoids are bioactive food compounds with potential lipid-lowering effects. Commercially available enzymatic assays are widely used to determine free fatty acid (FFA) and triglyceride (TG) levels both in vivo in plasma or serum and in vitro in cell culture medium or cell lysate. However, we have observed that various flavonoids interfere with peroxidases used in these enzymatic assays, resulting in incorrect lower FFA and TG levels than actually present. Furthermore, addition of isorhamnetin or the major metabolite of the flavonoid quercetin in human and rat plasma, quercetin-3-O-glucuronide, to murine serum also resulted in a significant reduction of the detected TG levels, while a trend was seen for FFA levels. It is concluded that when applying these assays, vigilance is needed and alternative analytical methods, directly assessing FFA or TG levels, should be used for studying the biological effects of flavonoids on FFA and TG levels.


Assuntos
Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Flavonoides/metabolismo , Peroxidases/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Análise de Variância , Animais , Bioquímica/métodos , Meios de Cultura/metabolismo , Flavonoides/sangue , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quercetina/análogos & derivados , Quercetina/sangue , Ratos
17.
Front Behav Neurosci ; 16: 877323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464142

RESUMO

Automatization and technological advances have led to a larger number of methods and systems to monitor and measure locomotor activity and more specific behavior of a wide variety of animal species in various environmental conditions in laboratory settings. In rodents, the majority of these systems require the animals to be temporarily taken away from their home-cage into separate observation cage environments which requires manual handling and consequently evokes distress for the animal and may alter behavioral responses. An automated high-throughput approach can overcome this problem. Therefore, this review describes existing automated methods and technologies which enable the measurement of locomotor activity and behavioral aspects of rodents in their most meaningful and stress-free laboratory environment: the home-cage. In line with the Directive 2010/63/EU and the 3R principles (replacement, reduction, refinement), this review furthermore assesses their suitability and potential for group-housed conditions as a refinement strategy, highlighting their current technological and practical limitations. It covers electrical capacitance technology and radio-frequency identification (RFID), which focus mainly on voluntary locomotor activity in both single and multiple rodents, respectively. Infrared beams and force plates expand the detection beyond locomotor activity toward basic behavioral traits but discover their full potential in individually housed rodents only. Despite the great premises of these approaches in terms of behavioral pattern recognition, more sophisticated methods, such as (RFID-assisted) video tracking technology need to be applied to enable the automated analysis of advanced behavioral aspects of individual animals in social housing conditions.

18.
19.
Mol Metab ; 66: 101602, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36115532

RESUMO

OBJECTIVE: Perfluoroalkyl substances (PFAS) are man-made chemicals with demonstrated endocrine-disrupting properties. Exposure to perfluorooctanoic acid (PFOA) has been linked to disturbed metabolism via the liver, although the exact mechanism is not clear. Moreover, information on the metabolic effects of the new PFAS alternative GenX is limited. We examined whether exposure to low-dose PFOA and GenX induces metabolic disturbances in mice, including NAFLD, dyslipidemia, and glucose tolerance, and studied the involvement of PPARα. METHODS: Male C57BL/6J wildtype and PPARα-/- mice were given 0.05 or 0.3 mg/kg body weight/day PFOA, or 0.3 mg/kg body weight/day GenX while being fed a high-fat diet for 20 weeks. Glucose and insulin tolerance tests were performed after 18 and 19 weeks. Plasma metabolite levels were measured next to a detailed assessment of the liver phenotype, including lipid content and RNA sequencing. RESULTS: Exposure to high-dose PFOA decreased body weight and increased liver weight in wildtype and PPARα-/- mice. High-dose but not low-dose PFOA reduced plasma triglycerides and cholesterol, which for triglycerides was dependent on PPARα. PFOA and GenX increased hepatic triglycerides in a PPARα-dependent manner. RNA sequencing showed that the effects of GenX on hepatic gene expression were entirely dependent on PPARα, while the effects of PFOA were mostly dependent on PPARα. In the absence of PPARα, the involvement of PXR and CAR became more prominent. CONCLUSION: Overall, we show that long-term and low-dose exposure to PFOA and GenX disrupts hepatic lipid metabolism in mice. Whereas the effects of PFOA are mediated by multiple nuclear receptors, the effects of GenX are entirely mediated by PPARα. Our data underscore the potential of PFAS to disrupt metabolism by altering signaling pathways in the liver.


Assuntos
Fluorocarbonos , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Triglicerídeos , Glucose , Peso Corporal
20.
Physiol Genomics ; 43(15): 942-9, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21673076

RESUMO

A low vs. high glycemic index of a high-fat (HF) diet (LGI and HGI, respectively) significantly retarded adverse health effects in adult male C57BL/6J mice, as shown recently (Van Schothorst EM, Bunschoten A, Schrauwen P, Mensink RP, Keijer J. FASEB J 23: 1092-1101, 2009). The LGI diet enhanced whole body insulin sensitivity and repressed HF diet-induced body and white adipose tissue (WAT) weight gain, resulting in significantly reduced serum leptin and resistin levels and increased adiponectin levels. We questioned how WAT is modulated and characterized the molecular mechanisms underlying the glycemic index-mediated effects using whole genome microarrays. This showed that the LGI diet mainly exerts its beneficial effects via substrate metabolism, especially fatty acid metabolism. In addition, cell adhesion and cytoskeleton remodeling showed reduced expression, in line with lower WAT mass. An important transcription factor showing enhanced expression is PPAR-γ. Furthermore, serum levels of triglycerides, total cholesterol, and HDL- and LDL-cholesterol were all significantly reduced by LGI diet, and simultaneously muscle insulin sensitivity was significantly increased as analyzed by protein kinase B/Akt phosphorylation. Cumulatively, even though these mice were fed an HF diet, the LGI diet induced significantly favorable changes in metabolism in WAT. These effects suggest a partial overlap with pharmacological approaches by thiazolidinediones to treat insulin resistance and statins for hypercholesterolemia. It is therefore tempting to speculate that such a dietary approach might beneficially support pharmacological treatment of insulin resistance or hypercholesterolemia in humans.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Índice Glicêmico , Metabolismo dos Lipídeos/fisiologia , Tecido Adiposo Branco/metabolismo , Animais , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA