Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 40(14): e106536, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34009673

RESUMO

Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.


Assuntos
Instabilidade Cromossômica/genética , Cromossomos/genética , Mutação/genética , Spliceossomos/genética , Sequência de Aminoácidos , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Íntrons/genética
2.
Mol Syst Biol ; 14(6): e8227, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29945941

RESUMO

Intestinal organoids accurately recapitulate epithelial homeostasis in vivo, thereby representing a powerful in vitro system to investigate lineage specification and cellular differentiation. Here, we applied a multi-omics framework on stem cell-enriched and stem cell-depleted mouse intestinal organoids to obtain a holistic view of the molecular mechanisms that drive differential gene expression during adult intestinal stem cell differentiation. Our data revealed a global rewiring of the transcriptome and proteome between intestinal stem cells and enterocytes, with the majority of dynamic protein expression being transcription-driven. Integrating absolute mRNA and protein copy numbers revealed post-transcriptional regulation of gene expression. Probing the epigenetic landscape identified a large number of cell-type-specific regulatory elements, which revealed Hnf4g as a major driver of enterocyte differentiation. In summary, by applying an integrative systems biology approach, we uncovered multiple layers of gene expression regulation, which contribute to lineage specification and plasticity of the mouse small intestinal epithelium.


Assuntos
Biologia Computacional , Intestinos/citologia , Organogênese , Organoides/citologia , Animais , Regulação da Expressão Gênica , Camundongos , Organogênese/genética , Células-Tronco
3.
Cancer Res ; 82(10): 1953-1968, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35570706

RESUMO

Micrometastases of colorectal cancer can remain dormant for years prior to the formation of actively growing, clinically detectable lesions (i.e., colonization). A better understanding of this step in the metastatic cascade could help improve metastasis prevention and treatment. Here we analyzed liver specimens of patients with colorectal cancer and monitored real-time metastasis formation in mouse livers using intravital microscopy to reveal that micrometastatic lesions are devoid of cancer stem cells (CSC). However, lesions that grow into overt metastases demonstrated appearance of de novo CSCs through cellular plasticity at a multicellular stage. Clonal outgrowth of patient-derived colorectal cancer organoids phenocopied the cellular and transcriptomic changes observed during in vivo metastasis formation. First, formation of mature CSCs occurred at a multicellular stage and promoted growth. Conversely, failure of immature CSCs to generate more differentiated cells arrested growth, implying that cellular heterogeneity is required for continuous growth. Second, early-stage YAP activity was required for the survival of organoid-forming cells. However, subsequent attenuation of early-stage YAP activity was essential to allow for the formation of cell type heterogeneity, while persistent YAP signaling locked micro-organoids in a cellularly homogenous and growth-stalled state. Analysis of metastasis formation in mouse livers using single-cell RNA sequencing confirmed the transient presence of early-stage YAP activity, followed by emergence of CSC and non-CSC phenotypes, irrespective of the initial phenotype of the metastatic cell of origin. Thus, establishment of cellular heterogeneity after an initial YAP-controlled outgrowth phase marks the transition to continuously growing macrometastases. SIGNIFICANCE: Characterization of the cell type dynamics, composition, and transcriptome of early colorectal cancer liver metastases reveals that failure to establish cellular heterogeneity through YAP-controlled epithelial self-organization prohibits the outgrowth of micrometastases. See related commentary by LeBleu, p. 1870.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Animais , Neoplasias Colorretais/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , Micrometástase de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia
4.
iScience ; 24(12): 103444, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34877501

RESUMO

Retinoic acid (RA) signaling is an important and conserved pathway that regulates cellular proliferation and differentiation. Furthermore, perturbed RA signaling is implicated in cancer initiation and progression. However, the mechanisms by which RA signaling contributes to homeostasis, malignant transformation, and disease progression in the intestine remain incompletely understood. Here, we report, in agreement with previous findings, that activation of the Retinoic Acid Receptor and the Retinoid X Receptor results in enhanced transcription of enterocyte-specific genes in mouse small intestinal organoids. Conversely, inhibition of this pathway results in reduced expression of genes associated with the absorptive lineage. Strikingly, this latter effect is conserved in a human organoid model for colorectal cancer (CRC) progression. We further show that RXR motif accessibility depends on progression state of CRC organoids. Finally, we show that reduced RXR target gene expression correlates with worse CRC prognosis, implying RA signaling as a putative therapeutic target in CRC.

5.
Cell Stem Cell ; 24(6): 927-943.e6, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130514

RESUMO

The deubiquitinating enzyme BAP1 is a tumor suppressor, among others involved in cholangiocarcinoma. BAP1 has many proposed molecular targets, while its Drosophila homolog is known to deubiquitinate histone H2AK119. We introduce BAP1 loss-of-function by CRISPR/Cas9 in normal human cholangiocyte organoids. We find that BAP1 controls the expression of junctional and cytoskeleton components by regulating chromatin accessibility. Consequently, we observe loss of multiple epithelial characteristics while motility increases. Importantly, restoring the catalytic activity of BAP1 in the nucleus rescues these cellular and molecular changes. We engineer human liver organoids to combine four common cholangiocarcinoma mutations (TP53, PTEN, SMAD4, and NF1). In this genetic background, BAP1 loss results in acquisition of malignant features upon xenotransplantation. Thus, control of epithelial identity through the regulation of chromatin accessibility appears to be a key aspect of BAP1's tumor suppressor function. Organoid technology combined with CRISPR/Cas9 provides an experimental platform for mechanistic studies of cancer gene function in a human context.


Assuntos
Colangiocarcinoma/genética , Cromatina/metabolismo , Células Epiteliais/fisiologia , Neoplasias Hepáticas/genética , Fígado/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Bioengenharia , Carcinogênese , Células Cultivadas , Cromatina/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citoesqueleto/metabolismo , Feminino , Humanos , Mutação com Perda de Função/genética , Camundongos , Camundongos SCID , Organoides , Transplante Heterólogo , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética
6.
Nat Commun ; 9(1): 4588, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389936

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex plays an important role in gene expression regulation, stem cell self-renewal, and lineage commitment. However, little is known about the dynamics of NuRD during cellular differentiation. Here, we study these dynamics using genome-wide profiling and quantitative interaction proteomics in mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We find that the genomic targets of NuRD are highly dynamic during differentiation, with most binding occurring at cell-type specific promoters and enhancers. We identify ZFP296 as an ESC-specific NuRD interactor that also interacts with the SIN3A complex. ChIP-sequencing in Zfp296 knockout (KO) ESCs reveals decreased NuRD binding both genome-wide and at ZFP296 binding sites, although this has little effect on the transcriptome. Nevertheless, Zfp296 KO ESCs exhibit delayed induction of lineage-specific markers upon differentiation to embryoid bodies. In summary, we identify an ESC-specific NuRD-interacting protein which regulates genome-wide NuRD binding and cellular differentiation.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Genoma , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transporte Proteico , Proteínas Repressoras/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3
7.
Cell Rep ; 22(6): 1600-1614, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29425513

RESUMO

Organoid technology provides the possibility of culturing patient-derived colon tissue and colorectal cancers (CRCs) while maintaining all functional and phenotypic characteristics. Labeling stem cells, especially in normal and benign tumor organoids of human colon, is challenging and therefore limits maximal exploitation of organoid libraries for human stem cell research. Here, we developed STAR (stem cell Ascl2 reporter), a minimal enhancer/promoter element that reports transcriptional activity of ASCL2, a master regulator of LGR5+ intestinal stem cells. Using lentiviral infection, STAR drives specific expression in stem cells of normal organoids and in multiple engineered and patient-derived CRC organoids of different genetic makeup. STAR reveals that differentiation hierarchies and the potential for cell fate plasticity are present at all stages of human CRC development. Organoid technology, in combination with the user-friendly nature of STAR, will facilitate basic research into human adult stem cell biology.


Assuntos
Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Intestinos , Organoides/patologia , Células-Tronco/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Genes Reporter , Xenoenxertos , Humanos , Intestinos/citologia , Camundongos
8.
Nat Struct Mol Biol ; 23(7): 682-690, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27294783

RESUMO

Although the core subunits of Polycomb group (PcG) complexes are well characterized, little is known about the dynamics of these protein complexes during cellular differentiation. We used quantitative interaction proteomics and genome-wide profiling to study PcG proteins in mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We found that the stoichiometry and genome-wide binding of PRC1 and PRC2 were highly dynamic during neural differentiation. Intriguingly, we observed a downregulation and loss of PRC2 from chromatin marked with trimethylated histone H3 K27 (H3K27me3) during differentiation, whereas PRC1 was retained at these sites. Additionally, we found PRC1 at enhancer and promoter regions independently of PRC2 binding and H3K27me3. Finally, overexpression of NPC-specific PRC1 interactors in ESCs led to increased Ring1b binding to, and decreased expression of, NPC-enriched Ring1b-target genes. In summary, our integrative analyses uncovered dynamic PcG subcomplexes and their widespread colocalization with active chromatin marks during differentiation.


Assuntos
Diferenciação Celular/genética , Cromatina/metabolismo , Histonas/genética , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas do Grupo Polycomb/genética , Animais , Linhagem Celular , Cromatina/química , Cromatografia Líquida , Cromossomos Artificiais Bacterianos , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Neurais/citologia , Proteínas do Grupo Polycomb/classificação , Proteínas do Grupo Polycomb/metabolismo , Mapeamento de Interação de Proteínas , Proteômica/métodos , Transdução de Sinais , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA