Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 70(2): e12949, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36168968

RESUMO

Despite the species' wide distribution, studies of the genetic diversity within Entamoeba coli and Entamoeba hartmanni remain limited. In the present study, we provide further insight into the genetic diversity of both species based on analysis of partial nuclear small subunit ribosomal DNA sequences generated from human fecal DNAs from samples collected in Africa, South America, and Europe. Reinforcing the previous recognition that E. coli is a species complex, our data confirm the existence of the two subtypes, ST1 and ST2, previously identified plus, potentially, a new subtype, ST3. While ST1 appears to be genetically quite homogenous, ST2 shows a substantial degree of intrasubtype diversity. ST2 was more common in samples collected outside Europe, whereas ST1 showed no geographical restriction. The potentially novel subtype is represented to date exclusively by sequences from South American and African samples. In contrast to previous reports, our new data also indicate substantial variation in E. hartmanni that could also support the establishment of subtypes within this species. Here, however, no links were identified between subtype and geographical origin.


Assuntos
Blastocystis , Entamoeba , Humanos , Entamoeba/genética , Escherichia coli , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , DNA Ribossômico/genética , Fezes , Filogenia , Variação Genética , Blastocystis/genética
2.
BMC Biol ; 19(1): 142, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294116

RESUMO

BACKGROUND: The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. RESULTS: Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. CONCLUSIONS: In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.


Assuntos
Naegleria fowleri , Animais , Modelos Animais de Doenças , Genômica , Camundongos , Naegleria fowleri/genética , Transcriptoma , Trogocitose
3.
J Invertebr Pathol ; 186: 107387, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32330478

RESUMO

With rapid increases in the global shrimp aquaculture sector, a focus on animal health during production becomes ever more important. Animal productivity is intimately linked to health, and the gut microbiome is becoming increasingly recognised as an important driver of cultivation success. The microbes that colonise the gut, commonly referred to as the gut microbiota or the gut microbiome, interact with their host and contribute to a number of key host processes, including digestion and immunity. Gut microbiome manipulation therefore represents an attractive proposition for aquaculture and has been suggested as a possible alternative to the use of broad-spectrum antibiotics in the management of disease, which is a major limitation of growth in this sector. Microbiota supplementation has also demonstrated positive effects on growth and survival of several different commercial species, including shrimp. Development of appropriate gut supplements, however, requires prior knowledge of the host microbiome. Little is known about the gut microbiota of the aquatic invertebrates, but penaeid shrimp are perhaps more studied than most. Here, we review current knowledge of information reported on the shrimp gut microbiota, highlighting the most frequently observed taxa and emphasizing the dominance of Proteobacteria within this community. We discuss involvement of the microbiome in the regulation of shrimp health and disease and describe how the gut microbiota changes with the introduction of several economically important shrimp pathogens. Finally, we explore evidence of microbiome supplementation and consider its role in the future of penaeid shrimp production.


Assuntos
Ração Animal/análise , Suplementos Nutricionais , Microbioma Gastrointestinal , Penaeidae/microbiologia , Proteobactérias/química , Animais , Aquicultura , Dieta
4.
PLoS Biol ; 15(9): e2003769, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28892507

RESUMO

Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than ß-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.


Assuntos
Blastocystis/genética , Genoma de Protozoário , Blastocystis/metabolismo , Metabolismo dos Carboidratos , Códon de Terminação , Microbioma Gastrointestinal , Humanos , Íntrons , Especificidade da Espécie
5.
Parasitology ; 146(8): 1022-1029, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30975238

RESUMO

Aphanomyces astaci causes crayfish plague, which is a devastating disease of European freshwater crayfish. The likely first introduction of A. astaci into Europe was in the mid-19th century in Italy, presumably with the introduction of North American crayfish. These crayfish can carry A. astaci in their cuticle as a benign infection. Aphanomyces astaci rapidly spread across Europe causing the decline of the highly susceptible indigenous crayfish species. Random amplified polymorphic DNA-PCR analysis of A. astaci pure cultures characterized five genotype groups (A, B, C, D and E). Current A. astaci genotyping techniques (microsatellites and genotype-specific regions, both targeting nuclear DNA) can be applied directly to DNA extracted from infected cuticles but require high infection levels. Therefore, they are not suitable for genotyping benign infections in North American crayfish (carriers). In the present study, we combine bioinformatics and molecular biology techniques to develop A. astaci genotyping molecular markers that target the mitochondrial DNA, increasing the sensitivity of the genotyping tools. The assays were validated on DNA extracts of A. astaci pure cultures, crayfish tissue extractions from crayfish plague outbreaks and tissue extractions from North American carriers. We demonstrate the presence of A. astaci genotype groups A and B in UK waters.


Assuntos
Aphanomyces/isolamento & purificação , Astacoidea/microbiologia , DNA Fúngico/análise , DNA Mitocondrial/análise , Genótipo , Técnicas de Genotipagem/métodos , Animais , Aphanomyces/genética
6.
J Invertebr Pathol ; 156: 6-13, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29953875

RESUMO

The oomycete Aphanomyces astaci causes crayfish plague, the most important disease of European freshwater crayfish species. Presumably introduced into Europe 150 years ago with the import of North American crayfish, A. astaci is highly pathogenic to European crayfish species. Five genotypes (A, B, C, D, and E) have been defined based on random amplified polymorphic DNA analysis (RAPD-PCR) from A. astaci pure cultures. The distinction of genotypes is an essential tool to conduct molecular epidemiological studies on crayfish plague and it has been used to clarify and better understand the history and spread of this disease in Europe. Whereas RAPD-PCR requires DNA from pure culture isolates, the development of genotyping tools that can be applied to DNA extracted from clinical samples allows a much wider application of genotyping studies, including revisiting historic samples. In this study, we present a new approach that adds to currently available methods for genotyping A. astaci strains directly from clinical crayfish samples. Whole-genome sequencing of A. astaci strains representing all currently known genotypes was employed, genomic regions unique to the respective genotype identified, and a PCR-based genotyping assay designed, which focuses on the presence/absence of PCR product after amplification with the genotype-specific primers. Our diagnostic methodology was tested using DNA extracts from pure A. astaci cultures, other Aphanomyces species and additional oomycetes, samples from a recent Italian crayfish plague outbreak and additional historical samples available in the Centre for Environment, Fisheries and Aquaculture Science laboratory. The new markers were reliable for pure culture and clinical samples from a recent outbreak and successfully discriminated genotype A, B, D, and E. The marker for genotype C required an additional sequencing step of the generated PCR product to confirm genotype.


Assuntos
Aphanomyces/genética , Astacoidea/parasitologia , Técnicas de Genotipagem/métodos , Infecções/veterinária , Sequenciamento Completo do Genoma/métodos , Animais , Reação em Cadeia da Polimerase/métodos
7.
J Invertebr Pathol ; 154: 109-116, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29555081

RESUMO

A parasite exhibiting Oomycete-like morphology and pathogenesis was isolated from discoloured eggs of the European lobster (Homarus gammarus) and later found in gill tissues of adults. Group-specific Oomycete primers were designed to amplify the 18S ribosomal small subunit (SSU), which initially identified the organism as the same as the 'Haliphthoros' sp. NJM 0034 strain (AB178865.1) previously isolated from abalone (imported from South Australia to Japan). However, in accordance with other published SSU-based phylogenies, the NJM 0034 isolate did not group with other known Haliphthoros species in our Maximum Likelihood and Bayesian phylogenies. Instead, the strain formed an orphan lineage, diverging before the separation of the Saprolegniales and Pythiales. Based upon 28S large subunit (LSU) phylogeny, our own isolate and the previously unidentified 0034 strain are both identical to the abalone pathogen Halioticida noduliformans. The genus shares morphological similarities with Haliphthoros and Halocrusticida and forms a clade with these in LSU phylogenies. Here, we confirm the first recorded occurrence of H. noduliformans in European lobsters and associate its presence with pathology of the egg mass, likely leading to reduced fecundity.


Assuntos
Nephropidae/parasitologia , Oomicetos/isolamento & purificação , Animais , Teorema de Bayes , Brânquias/parasitologia , Funções Verossimilhança , Oomicetos/classificação , Óvulo/parasitologia , Filogenia
8.
Biochemistry ; 56(3): 534-542, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27478903

RESUMO

Charged, solvent-exposed residues at the entrance to the substrate binding site (gatekeeper residues) produce electrostatic dipole interactions with approaching substrates, and control their access by a novel mechanism called "electrostatic gatekeeper effect". This proof-of-concept study demonstrates that the nucleotide specificity can be engineered by altering the electrostatic properties of the gatekeeper residues outside the binding site. Using Blastocystis succinyl-CoA synthetase (SCS, EC 6.2.1.5), we demonstrated that the gatekeeper mutant (ED) resulted in ATP-specific SCS to show high GTP specificity. Moreover, nucleotide binding site mutant (LF) had no effect on GTP specificity and remained ATP-specific. However, via combination of the gatekeeper mutant with the nucleotide binding site mutant (ED+LF), a complete reversal of nucleotide specificity was obtained with GTP, but no detectable activity was obtained with ATP. This striking result of the combined mutant (ED+LF) was due to two changes; negatively charged gatekeeper residues (ED) favored GTP access, and nucleotide binding site residues (LF) altered ATP binding, which was consistent with the hypothesis of the "electrostatic gatekeeper effect". These results were further supported by molecular modeling and simulation studies. Hence, it is imperative to extend the strategy of the gatekeeper effect in a different range of crucial enzymes (synthetases, kinases, and transferases) to engineer substrate specificity for various industrial applications and substrate-based drug design.


Assuntos
Trifosfato de Adenosina/química , Blastocystis/genética , Guanosina Trifosfato/química , Engenharia de Proteínas , Proteínas de Protozoários/química , Succinato-CoA Ligases/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Blastocystis/enzimologia , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Guanosina Trifosfato/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Eletricidade Estática , Especificidade por Substrato , Succinato-CoA Ligases/genética , Succinato-CoA Ligases/metabolismo , Suínos
9.
Crit Rev Biochem Mol Biol ; 48(4): 373-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23895660

RESUMO

Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.


Assuntos
Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Paleontologia/métodos , Evolução Biológica , Células Eucarióticas/classificação , Filogenia
10.
Elife ; 132024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780415

RESUMO

Stramenopiles form a clade of diverse eukaryotic organisms, including multicellular algae, the fish and plant pathogenic oomycetes, such as the potato blight Phytophthora, and the human intestinal protozoan Blastocystis. In most eukaryotes, glycolysis is a strictly cytosolic metabolic pathway that converts glucose to pyruvate, resulting in the production of NADH and ATP (Adenosine triphosphate). In contrast, stramenopiles have a branched glycolysis in which the enzymes of the pay-off phase are located in both the cytosol and the mitochondrial matrix. Here, we identify a mitochondrial carrier in Blastocystis that can transport glycolytic intermediates, such as dihydroxyacetone phosphate and glyceraldehyde-3-phosphate, across the mitochondrial inner membrane, linking the cytosolic and mitochondrial branches of glycolysis. Comparative analyses with the phylogenetically related human mitochondrial oxoglutarate carrier (SLC25A11) and dicarboxylate carrier (SLC25A10) show that the glycolytic intermediate carrier has lost its ability to transport the canonical substrates malate and oxoglutarate. Blastocystis lacks several key components of oxidative phosphorylation required for the generation of mitochondrial ATP, such as complexes III and IV, ATP synthase, and ADP/ATP carriers. The presence of the glycolytic pay-off phase in the mitochondrial matrix generates ATP, which powers energy-requiring processes, such as macromolecular synthesis, as well as NADH, used by mitochondrial complex I to generate a proton motive force to drive the import of proteins and molecules. Given its unique substrate specificity and central role in carbon and energy metabolism, the carrier for glycolytic intermediates identified here represents a specific drug and pesticide target against stramenopile pathogens, which are of great economic importance.


All living organisms breakdown food molecules to generate energy for processes, such as growing, reproducing and movement. The series of chemical reactions that breakdown sugars into smaller molecules ­ known as glycolysis ­ is so important that it occurs in all life forms, from bacteria to humans. In higher organisms, such as fungi and animals, these reactions take place in the cytosol, the space surrounding the cell's various compartments. A transport protein then shuttles the end-product of glycolysis ­ pyruvate ­ into specialised compartments, known as the mitochondria, where most energy is produced. However, recently it was discovered that a group of living organisms, called the stramenopiles, have a branched glycolysis in which the enzymes involved in the second half of this process are located in both the cytosol and mitochondrial matrix. But it was not known how the intermediate molecules produced after the first half of glycolysis enter the mitochondria. To answer this question, Pyrihová et al. searched for transport protein(s) that could link the two halves of the glycolysis pathway. Computational analyses, comparing the genetic sequences of many transport proteins from several different species, revealed a new group found only in stramenopiles. Pyrihová et al. then used microscopy to visualise these new transport proteins ­ called GIC-1 and GIC-2 ­ in the parasite Blastocystis, which infects the human gut, and observed that they localise to mitochondria. Further biochemical experiments showed that GIC-1 and GIC-2 can physically bind these intermediate molecules, but only GIC-2 can transport them across membranes. Taken together, these observations suggest that GIC-2 links the two halves of glycolysis in Blastocystis. Further analyses could reveal corresponding transport proteins in other stramenopiles, many of which have devastating effects on agriculture, such as Phytophthora, which causes potato blight, or Saprolegnia, which causes skin infections in farmed salmon. Since human cells do not have equivalent transporters, they could be new drug targets not only for Blastocystis, but for these harmful pathogens as well.


Assuntos
Blastocystis , Citosol , Glicólise , Mitocôndrias , Blastocystis/metabolismo , Blastocystis/genética , Humanos , Mitocôndrias/metabolismo , Citosol/metabolismo , Transporte Biológico , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética
11.
J Cell Sci ; 124(Pt 4): 613-21, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21266469

RESUMO

Endosomal sorting complexes required for transport (ESCRTs) are heteromeric protein complexes required for multivesicular body (MVB) morphogenesis. ESCRTs I, II, III and III-associated are ubiquitous in eukaryotes and presumably ancient in origin. ESCRT 0 recruits cargo to the MVB and appears to be opisthokont-specific, bringing into question aspects of the current model of ESCRT mechanism. One caveat to the restricted distribution of ESCRT 0 was the previous limited availability of amoebozoan genomes, the supergroup closest to opisthokonts. Here, we significantly expand the sampling of ESCRTs in Amoebozoa. Our electron micrographic and bioinformatics evidence confirm the presence of MVBs in the amoeboflagellate Breviata anathema. Searches of genomic databases of amoebozoans confirm the ubiquitous nature of ESCRTs I-III-associated and the restriction of ESCRT 0 to opisthokonts. Recently, an alternate ESCRT 0 complex, centering on Tom1 proteins, has been proposed. We determine the distribution of Tom1 family proteins across eukaryotes and show that the Tom1, Tom1L1 and Tom1L2 proteins are a vertebrate-specific expansion of the single Tom1 family ancestor, which has indeed been identified in at least one member of each of the major eukaryotic supergroups. This implies a more widely conserved and ancient role for the Tom1 family in endocytosis than previously suspected.


Assuntos
Amoeba/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Evolução Molecular , Corpos Multivesiculares/metabolismo , Proteínas de Protozoários/metabolismo , Amoeba/classificação , Amoeba/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Dados de Sequência Molecular , Corpos Multivesiculares/genética , Filogenia , Transporte Proteico , Proteínas de Protozoários/genética
12.
Biochem Biophys Res Commun ; 440(2): 235-40, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24045011

RESUMO

Small inorganic assemblies of alternating ferrous/ferric iron and sulphide ions, so-called iron-sulphur (Fe-S) clusters, are possibly nature's most ancient prosthetic groups. One of the early actors in Fe-S cluster biosynthesis is a protein complex composed of a cysteine desulphurase, Nfs1, and its functional binding partner, Isd11. Although the essential function of Nfs1·Isd11 in the liberation of elemental sulphur from free cysteine is well established, little is known about its structure. Here, we provide evidence that shows Isd11 has a profound effect on the oligomeric state of Nfs1.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Estrutura Quaternária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfurtransferases/química , Dicroísmo Circular , Modelos Moleculares , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta , Homologia Estrutural de Proteína
13.
PLoS One ; 18(12): e0295058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127919

RESUMO

The nitrate (NO3-) reducing bacteria resident in the oral cavity have been implicated as key mediators of nitric oxide (NO) homeostasis and human health. NO3--reducing oral bacteria reduce inorganic dietary NO3- to nitrite (NO2-) via the NO3--NO2--NO pathway. Studies of oral NO3--reducing bacteria have typically sampled from either the tongue surface or saliva. The aim of this study was to assess whether other areas in the mouth could contain a physiologically relevant abundance of NO3- reducing bacteria, which may be important for sampling in clinical studies. The bacterial composition of seven oral sample types from 300 individuals were compared using a meta-analysis of the Human Microbiome Project data. This analysis revealed significant differences in the proportions of 20 well-established oral bacteria and highly abundant NO3--reducing bacteria across each oral site. The genera included Actinomyces, Brevibacillus, Campylobacter, Capnocytophaga, Corynebacterium, Eikenella, Fusobacterium, Granulicatella, Haemophilus, Leptotrichia, Microbacterium, Neisseria, Porphyromonas, Prevotella, Propionibacterium, Rothia, Selenomonas, Staphylococcus, Streptococcus and Veillonella. The highest proportion of NO3--reducing bacteria was observed in saliva, where eight of the bacterial genera were found in higher proportion than on the tongue dorsum, whilst the lowest proportions were found in the hard oral surfaces. Saliva also demonstrated higher intra-individual variability and bacterial diversity. This study provides new information on where samples should be taken in the oral cavity to assess the abundance of NO3--reducing bacteria. Taking saliva samples may benefit physiological studies, as saliva contained the highest abundance of NO3- reducing bacteria and is less invasive than other sampling methods. These results inform future studies coupling oral NO3--reducing bacteria research with physiological outcomes affecting human health.


Assuntos
Microbiota , Nitratos , Humanos , Nitratos/metabolismo , Dióxido de Nitrogênio , Boca/microbiologia , Bactérias , Saliva/metabolismo , Streptococcus
14.
Curr Biol ; 33(12): 2449-2464.e8, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267944

RESUMO

Blastocystis is the most prevalent microbial eukaryote in the human and animal gut, yet its role as commensal or parasite is still under debate. Blastocystis has clearly undergone evolutionary adaptation to the gut environment and possesses minimal cellular compartmentalization, reduced anaerobic mitochondria, no flagella, and no reported peroxisomes. To address this poorly understood evolutionary transition, we have taken a multi-disciplinary approach to characterize Proteromonas lacertae, the closest canonical stramenopile relative of Blastocystis. Genomic data reveal an abundance of unique genes in P. lacertae but also reductive evolution of the genomic complement in Blastocystis. Comparative genomic analysis sheds light on flagellar evolution, including 37 new candidate components implicated with mastigonemes, the stramenopile morphological hallmark. The P. lacertae membrane-trafficking system (MTS) complement is only slightly more canonical than that of Blastocystis, but notably, we identified that both organisms encode the complete enigmatic endocytic TSET complex, a first for the entire stramenopile lineage. Investigation also details the modulation of mitochondrial composition and metabolism in both P. lacertae and Blastocystis. Unexpectedly, we identify in P. lacertae the most reduced peroxisome-derived organelle reported to date, which leads us to speculate on a mechanism of constraint guiding the dynamics of peroxisome-mitochondrion reductive evolution on the path to anaerobiosis. Overall, these analyses provide a launching point to investigate organellar evolution and reveal in detail the evolutionary path that Blastocystis has taken from a canonical flagellated protist to the hyper-divergent and hyper-prevalent animal and human gut microbe.


Assuntos
Blastocystis , Microbioma Gastrointestinal , Animais , Humanos , Blastocystis/genética , Microbioma Gastrointestinal/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Organelas/metabolismo , Eucariotos
15.
J Eukaryot Microbiol ; 59(2): 111-3, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22288602

RESUMO

Mitochondria have been put forward as the saviours of anaerobes when their environment became oxygenated. However, despite oxygenic photosynthesis evolving around 2.7 billion years ago (Ga), followed by the "Great Oxidation" of the atmosphere ~ 2.4 Ga, the deep oceans remained largely anoxic and either iron-enriched or sulphidic until 580 million years ago, when the eukaryotic radiation was well underway. Atmospheric oxygen probably remained at an intermediate concentration (1-10% of the present level) from ~ 2.4 until ~ 0.8 Ga when a "lesser oxidation" began. This drastically changes the textbook view of the ecological conditions under which the mitochondrial endosymbiont established itself. It could explain the widespread distribution of anaerobic biochemistry in every eukaryotic supergroup: anaerobic biochemistry is hard-wired into the eukaryotes.


Assuntos
Eucariotos/genética , Oxigênio/metabolismo , Evolução Biológica , Ecossistema , Meio Ambiente , Eucariotos/metabolismo , Mitocôndrias/metabolismo , Oxigênio/análise
16.
Eukaryot Cell ; 10(11): 1582-5, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21965513

RESUMO

Heat shock protein genes led to the discovery of mitosomes in Entamoeba histolytica, but mitosomes have not been described for any other Entamoeba species, nor have they been identified in the cyst stage. Here, we show that the distantly related reptilian pathogen Entamoeba invadens contains mitosomes, in both trophozoites and cysts, suggesting all Entamoeba species contain these organelles.


Assuntos
Entamoeba/ultraestrutura , Organelas/fisiologia , Organelas/ultraestrutura , Trofozoítos/ultraestrutura , Chaperonina 60/metabolismo , Entamoeba/genética , Entamoeba/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias , Trofozoítos/fisiologia
17.
Microorganisms ; 10(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35208781

RESUMO

Blastocystis is a unicellular eukaryote found in the gastrointestinal tract of both human and other animal hosts. The clinical significance of colonic Blastocystis colonization remains obscure. In this study, we used metabarcoding and bioinformatics analyses to identify differences in stool microbiota diversity between Blastocystis-positive and Blastocystis-negative individuals (n = 1285). Alpha diversity was significantly higher in Blastocystis carriers. At phylum level, Firmicutes and Bacteroidetes were enriched in carriers, while Proteobacteria were enriched in non-carriers. The genera Prevotella, Faecalibacterium, Flavonifracter, Clostridium, Succinivibrio, and Oscillibacter were enriched in carriers, whereas Escherichia, Bacteroides, Klebsiella, and Pseudomonas were enriched in non-carriers. No difference in beta diversity was observed. Individuals with Blastocystis-positive stools appear to have gut microbiomes associated with eubiosis unlike those with Blastocystis-negative stools, whose gut microbiomes are similar to those associated with dysbiosis. The role of Blastocystis as an indicator organism and potential modulator of the gut microbiota warrants further scrutiny.

18.
Curr Biol ; 18(8): 580-5, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18403202

RESUMO

Blastocystis is a unicellular stramenopile of controversial pathogenicity in humans. Although it is a strict anaerobe, Blastocystis has mitochondrion-like organelles with cristae, a transmembrane potential and DNA. An apparent lack of several typical mitochondrial pathways has led some to suggest that these organelles might be hydrogenosomes, anaerobic organelles related to mitochondria. We generated 12,767 expressed sequence tags (ESTs) from Blastocystis and identified 115 clusters that encode putative mitochondrial and hydrogenosomal proteins. Among these is the canonical hydrogenosomal protein iron-only [FeFe] hydrogenase that we show localizes to the organelles. The organelles also have mitochondrial characteristics, including pathways for amino acid metabolism, iron-sulfur cluster biogenesis, and an incomplete tricarboxylic acid cycle as well as a mitochondrial genome. Although complexes I and II of the electron transport chain (ETC) are present, we found no evidence for complexes III and IV or F1Fo ATPases. The Blastocystis organelles have metabolic properties of aerobic and anaerobic mitochondria and of hydrogenosomes. They are convergently similar to organelles recently described in the unrelated ciliate Nyctotherus ovalis. These findings blur the boundaries between mitochondria, hydrogenosomes, and mitosomes, as currently defined, underscoring the disparate selective forces that shape these organelles in eukaryotes.


Assuntos
Blastocystis/metabolismo , Mitocôndrias/metabolismo , Aerobiose/fisiologia , Anaerobiose/fisiologia , Animais , Evolução Biológica , Blastocystis/genética , Metabolismo Energético/fisiologia , Etiquetas de Sequências Expressas , Genoma Mitocondrial , Mitocôndrias/genética , Dados de Sequência Molecular
19.
Cell Microbiol ; 12(3): 331-42, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19888992

RESUMO

The assembly of vital reactive iron-sulfur (Fe-S) cofactors in eukaryotes is mediated by proteins inherited from the original mitochondrial endosymbiont. Uniquely among eukaryotes, however, Entamoeba and Mastigamoeba lack such mitochondrial-type Fe-S cluster assembly proteins and possess instead an analogous bacterial-type system acquired by lateral gene transfer. Here we demonstrate, using immunomicroscopy and biochemical methods, that beyond their predicted cytosolic distribution the bacterial-type Fe-S cluster assembly proteins NifS and NifU have been recruited to function within the relict mitochondrial organelles (mitosomes) of Entamoeba histolytica. Both Nif proteins are 10-fold more concentrated within mitosomes compared with their cytosolic distribution suggesting that active Fe-S protein maturation occurs in these organelles. Quantitative immunoelectron microscopy showed that amoebal mitosomes are minute but highly abundant cellular structures that occupy up to 2% of the total cell volume. In addition, protein colocalization studies allowed identification of the amoebal hydroperoxide detoxification enzyme rubrerythrin as a mitosomal protein. This protein contains functional Fe-S centres and exhibits peroxidase activity in vitro. Our findings demonstrate the role of analogous protein replacement in mitochondrial organelle evolution and suggest that the relict mitochondrial organelles of Entamoeba are important sites of metabolic activity that function in Fe-S protein-mediated oxygen detoxification.


Assuntos
Proteínas de Bactérias/metabolismo , Entamoeba histolytica/metabolismo , Ferro/metabolismo , Organelas/metabolismo , Oxigênio/antagonistas & inibidores , Enxofre/metabolismo , Animais , Hemeritrina/metabolismo , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Peroxidase/metabolismo , Rubredoxinas/metabolismo
20.
Proc Natl Acad Sci U S A ; 105(29): 10061-6, 2008 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-18632566

RESUMO

We describe a novel, typically prokaryotic, sensor kinase in chloroplasts of green plants. The gene for this chloroplast sensor kinase (CSK) is found in cyanobacteria, prokaryotes from which chloroplasts evolved. The CSK gene has moved, during evolution, from the ancestral chloroplast to the nuclear genomes of eukaryotic algae and green plants. The CSK protein is now synthesised in the cytosol of photosynthetic eukaryotes and imported into their chloroplasts as a protein precursor. In the model higher plant Arabidopsis thaliana, CSK is autophosphorylated and required for control of transcription of chloroplast genes by the redox state of an electron carrier connecting photosystems I and II. CSK therefore provides a redox regulatory mechanism that couples photosynthesis to gene expression. This mechanism is inherited directly from the cyanobacterial ancestor of chloroplasts, is intrinsic to chloroplasts, and is targeted to chloroplast genes.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimologia , Cloroplastos/genética , Histidina Quinase/genética , Histidina Quinase/metabolismo , Fotossíntese/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Sequência de Bases , Cianobactérias/enzimologia , Cianobactérias/genética , Primers do DNA/genética , Evolução Molecular , Expressão Gênica , Genes de Plantas , Dados de Sequência Molecular , Mutação , Oxirredução , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Simbiose , Nicotiana/enzimologia , Nicotiana/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA