Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(16): 10931-40, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27040354

RESUMO

When exposed to a potential exceeding 1.5 V versus RHE for several minutes the molecular iridium bishydroxide complex bearing a pentamethylcyclopentadienyl and a N-dimethylimidazolin-2-ylidene ligand spontaneously adsorbs onto the surface of glassy carbon and gold electrodes. Simultaneously with the adsorption of the material on the electrode, the evolution of dioxygen is detected and modifications of the catalyst structure are observed. XPS and XAS studies reveal that the species present at the electrode interface is best described as a partly oxidized molecular species rather than the formation of large aggregates of iridium oxide. These findings are in line with the unique kinetic profile of the parent complex in the water oxidation reaction.

2.
Chem Soc Rev ; 43(15): 5183-91, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24802308

RESUMO

Ammonia is an important nutrient for the growth of plants. In industry, ammonia is produced by the energy expensive Haber-Bosch process where dihydrogen and dinitrogen form ammonia at a very high pressure and temperature. In principle one could also reduce dinitrogen upon addition of protons and electrons similar to the mechanism of ammonia production by nitrogenases. Recently, major breakthroughs have taken place in our understanding of biological fixation of dinitrogen, of molecular model systems that can reduce dinitrogen, and in the electrochemical reduction of dinitrogen at heterogeneous surfaces. Yet for efficient reduction of dinitrogen with protons and electrons major hurdles still have to be overcome. In this tutorial review we give an overview of the different catalytic systems, highlight the recent breakthroughs, pinpoint common grounds and discuss the bottlenecks and challenges in catalytic reduction of dinitrogen.


Assuntos
Elétrons , Nitrogênio/química , Oxirredução , Prótons , Amônia/química , Eletroquímica
3.
ChemElectroChem ; 9(3): e202101365, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35911790

RESUMO

Upon the electrochemical reduction of an in situ generated 5-diazo-1,10-phenanthroline ion, phenanthroline was covalently attached to a gold electrode. The grafted molecules act as a ligand when brought in contact with a copper-containing electrolyte solution. As the ligands are limited in spatial movement, the exclusive formation of the active species with only one phenanthroline ligand coordinated was expected. The in situ generated complexes have been investigated for activity in the oxygen reduction reaction, for which an overpotential of 800 mV is observed. During catalysis, initially a thick copper layer is formed on top of an organic layer that is still present on the gold surface. Upon deterioration of the organic layer underneath the copper over time, the amount of copper on the electrode and thereby the electrocatalytic activity decreases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA