Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39042020

RESUMO

Changes in the oxidative (redox) environment accompany idiopathic pulmonary fibrosis (IPF). S-glutathionylation of reactive protein cysteines is a post-translational event that transduces oxidant signals into biological responses. We recently demonstrated that increases in S-glutathionylation promote pulmonary fibrosis, which was mitigated by the deglutathionylating enzyme glutaredoxin (GLRX). However, the protein targets of S-glutathionylation that promote fibrogenesis remain unknown. In the present study we addressed whether the extracellular matrix is a target for S-glutathionylation. We discovered increases in collagen 1A1 S-glutathionylation (COL1A1-SSG) in lung tissues from IPF subjects compared to control subjects in association with increases in ER oxidoreductin 1 (ERO1A) and enhanced oxidation of ER-localized peroxiredoxin 4 (PRDX4) reflecting an increased oxidative environment of the endoplasmic reticulum (ER). Human lung fibroblasts exposed to transforming growth factor beta 1 (TGFB1) show increased secretion of COL1A1-SSG. Pharmacologic inhibition of ERO1A diminished oxidation of PRDX4, attenuated COL1A1-SSG and total COL1A1 levels and dampened fibroblast activation. Absence of Glrx enhanced COL1A1-SSG and overall COL1A1 secretion and promoted activation of mechanosensing pathways. Remarkably, COL1A1-SSG resulted in marked resistance to collagenase degradation. Compared to COL1, lung fibroblasts plated on COL1-SSG proliferated more rapidly, and increased expression of genes encoding extracellular matrix crosslinking enzymes and genes linked to mechanosensing pathways. Overall, these findings suggest that glutathione-dependent oxidation of COL1A1 occurs in settings of IPF in association with enhanced ER oxidative stress and may promote fibrotic remodeling due to increased resistance to collagenase-mediated degradation and fibroblast activation.

2.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L228-L242, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625485

RESUMO

More than 50% of people with asthma in the United States are obese, and obesity often worsens symptoms of allergic asthma and impairs response to treatment. Based on previously established roles of the epithelial NADPH oxidase DUOX1 in allergic airway inflammation, we addressed the potential involvement of DUOX1 in altered allergic inflammation in the context of obesity. Intranasal house dust mite (HDM) allergen challenge of subjects with allergic asthma induced rapid secretion of IL-33, then IL-13, into the nasal lumen, responses that were significantly enhanced in obese asthmatic subjects (BMI >30). Induction of diet-induced obesity (DIO) in mice by high-fat diet (HFD) feeding similarly enhanced acute airway responses to intranasal HDM challenge, particularly with respect to secretion of IL-33 and type 2/type 3 cytokines, and this was associated with enhanced epithelial DUOX1 expression and was avoided in DUOX1-deficient mice. DIO also enhanced DUOX1-dependent features of chronic HDM-induced allergic inflammation. Although DUOX1 did not affect overall weight gain by HFD feeding, it contributed to glucose intolerance, suggesting a role in glucose metabolism. However, glucose intolerance induced by short-term HFD feeding, in the absence of adiposity, was not sufficient to alter HDM-induced acute airway responses. DIO was associated with enhanced presence of the adipokine leptin in the airways, and leptin enhanced DUOX1-dependent IL-13 and mucin production in airway epithelial cells. In conclusion, augmented inflammatory airway responses to HDM in obesity are associated with increases in airway epithelial DUOX1, and by increased airway epithelial leptin signaling.


Assuntos
Asma , Intolerância à Glucose , Animais , Camundongos , Alérgenos , Asma/metabolismo , Dieta , Modelos Animais de Doenças , Oxidases Duais , Inflamação , Interleucina-13 , Interleucina-33 , Leptina , Obesidade , Pyroglyphidae
3.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L141-L153, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511516

RESUMO

Obesity is associated with severe, difficult-to-control asthma, and increased airway oxidative stress. Mitochondrial reactive oxygen species (mROS) are an important source of oxidative stress in asthma, leading us to hypothesize that targeting mROS in obese allergic asthma might be an effective treatment. Using a mouse model of house dust mite (HDM)-induced allergic airway disease in mice fed a low- (LFD) or high-fat diet (HFD), and the mitochondrial antioxidant MitoQuinone (MitoQ), we investigated the effects of obesity and ROS on HDM-induced airway inflammation, remodeling, and airway hyperresponsiveness (AHR). Obese allergic mice showed increased lung tissue eotaxin, airway tissue eosinophilia, and AHR compared with lean allergic mice. MitoQ reduced airway inflammation, remodeling, and hyperreactivity in both lean and obese allergic mice, and tissue eosinophilia in obese-allergic mice. Similar effects were observed with decyl triphosphonium (dTPP+), the hydrophobic cationic moiety of MitoQ lacking ubiquinone. HDM-induced oxidative sulfenylation of proteins was increased particularly in HFD mice. Although only MitoQ reduced sulfenylation of proteins involved in protein folding in the endoplasmic reticulum (ER), ER stress was attenuated by both MitoQ and dTPP+ suggesting the anti-allergic effects of MitoQ are mediated in part by effects of its hydrophobic dTPP+ moiety reducing ER stress. In summary, oxidative signaling is an important mediator of allergic airway disease. MitoQ, likely through reducing protein oxidation and affecting the UPR pathway, might be effective for the treatment of asthma and specific features of obese asthma.


Assuntos
Asma , Eosinofilia , Animais , Asma/metabolismo , Pulmão/metabolismo , Obesidade/metabolismo , Inflamação/patologia , Pyroglyphidae , Eosinofilia/patologia , Modelos Animais de Doenças
4.
J Immunol ; 206(12): 2989-2999, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34088769

RESUMO

The respiratory epithelium forms the first line of defense against inhaled pathogens and acts as an important source of innate cytokine responses to environmental insults. One critical mediator of these responses is the IL-1 family cytokine IL-33, which is rapidly secreted upon acute epithelial injury as an alarmin and induces type 2 immune responses. Our recent work highlighted the importance of the NADPH oxidase dual oxidase 1 (DUOX1) in acute airway epithelial IL-33 secretion by various airborne allergens associated with H2O2 production and reduction-oxidation-dependent activation of Src kinases and epidermal growth factor receptor (EGFR) signaling. In this study, we show that IL-33 secretion in response to acute airway challenge with house dust mite (HDM) allergen critically depends on the activation of Src by a DUOX1-dependent oxidative mechanism. Intriguingly, HDM-induced epithelial IL-33 secretion was dramatically attenuated by small interfering RNA- or Ab-based approaches to block IL-33 signaling through its receptor IL1RL1 (ST2), indicating that HDM-induced IL-33 secretion includes a positive feed-forward mechanism involving ST2-dependent IL-33 signaling. Moreover, activation of type 2 cytokine responses by direct airway IL-33 administration was associated with ST2-dependent activation of DUOX1-mediated H2O2 production and reduction-oxidation-based activation of Src and EGFR and was attenuated in Duox1 -/- and Src +/- mice, indicating that IL-33-induced epithelial signaling and subsequent airway responses involve DUOX1/Src-dependent pathways. Collectively, our findings suggest an intricate relationship between DUOX1, Src, and IL-33 signaling in the activation of innate type 2 immune responses to allergens, involving DUOX1-dependent epithelial Src/EGFR activation in initial IL-33 secretion and in subsequent IL-33 signaling through ST2 activation.


Assuntos
Alérgenos/imunologia , Oxidases Duais/imunologia , Interleucina-33/imunologia , Mucosa Respiratória/imunologia , Quinases da Família src/imunologia , Doença Aguda , Animais , Células Cultivadas , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Respiratória/patologia , Transdução de Sinais/imunologia , Quinases da Família src/deficiência
5.
J Biol Chem ; 296: 100665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33895140

RESUMO

Peroxiredoxins (PRDXs) catalyze the reduction of hydrogen peroxide (H2O2). PRDX4 is the only peroxiredoxin located within the endoplasmic reticulum (ER) and is the most highly expressed H2O2 scavenger in the ER. PRDX4 has emerged as an important player in numerous diseases, such as fibrosis and metabolic syndromes, and its overoxidation is a potential indicator of ER redox stress. It is unclear how overoxidation of PRDX4 governs its oligomerization state and interacting partners. Herein, we addressed these questions via nonreducing Western blots, mass spectrometry, and site-directed mutagenesis. We report that the oxidation of PRDX4 in lung epithelial cells treated with tertbutyl hydroperoxide caused a shift of PRDX4 from monomer/dimer to high molecular weight (HMW) species, which contain PRDX4 modified with sulfonic acid residues (PRDX4-SO3), as well as of a complement of ER-associated proteins, including protein disulfide isomerases important in protein folding, thioredoxin domain-containing protein 5, and heat shock protein A5, a key regulator of the ER stress response. Mutation of any of the four cysteines in PRDX4 altered the HMW species in response to tertbutyl hydroperoxide as well as the secretion of PRDX4. We also demonstrate that the expression of ER oxidoreductase 1 alpha, which generates H2O2 in the ER, increased PRDX4 HMW formation and secretion. These results suggest a link between SO3 modification in the formation of HMW PRDX4 complexes in cells, whereas the association of key regulators of ER homeostasis with HMW oxidized PRDX4 point to a putative role of PRDX4 in regulating ER stress responses.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Dobramento de Proteína , Animais , Camundongos , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
6.
FASEB J ; 35(5): e21525, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817836

RESUMO

Glycolysis is a well-known process by which metabolically active cells, such as tumor or immune cells meet their high metabolic demands. Previously, our laboratory has demonstrated that in airway epithelial cells, the pleiotropic cytokine, interleukin-1 beta (IL1B) induces glycolysis and that this contributes to allergic airway inflammation and remodeling. Activation of glycolysis is known to increase NADPH reducing equivalents generated from the pentose phosphate pathway, linking metabolic reprogramming with redox homeostasis. In addition, numerous glycolytic enzymes are known to be redox regulated. However, whether and how redox chemistry regulates metabolic reprogramming more generally remains unclear. In this study, we employed a multi-omics approach in primary mouse airway basal cells to evaluate the role of protein redox biochemistry, specifically protein glutathionylation, in mediating metabolic reprogramming. Our findings demonstrate that IL1B induces glutathionylation of multiple proteins involved in metabolic regulation, notably in the glycolysis pathway. Cells lacking Glutaredoxin-1 (Glrx), the enzyme responsible for reversing glutathionylation, show modulation of multiple metabolic pathways including an enhanced IL1B-induced glycolytic response. This was accompanied by increased secretion of thymic stromal lymphopoietin (TSLP), a cytokine important in asthma pathogenesis. Targeted inhibition of glycolysis prevented TSLP release, confirming the functional relevance of enhanced glycolysis in cells stimulated with IL1B. Collectively, data herein point to an intriguing link between glutathionylation chemistry and glycolytic reprogramming in epithelial cells and suggest that glutathionylation chemistry may represent a therapeutic target in pulmonary pathologies with perturbations in the glycolysis pathway.


Assuntos
Reprogramação Celular , Glutarredoxinas/fisiologia , Glutationa/metabolismo , Glicólise , Inflamação/imunologia , Interleucina-1beta/farmacologia , Pulmão/imunologia , Animais , Citocinas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução
7.
J Immunol ; 204(4): 763-774, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31924651

RESUMO

Asthma is a chronic disorder characterized by inflammation, mucus metaplasia, airway remodeling, and hyperresponsiveness. We recently showed that IL-1-induced glycolytic reprogramming contributes to allergic airway disease using a murine house dust mite model. Moreover, levels of pyruvate kinase M2 (PKM2) were increased in this model as well as in nasal epithelial cells from asthmatics as compared with healthy controls. Although the tetramer form of PKM2 converts phosphoenolpyruvate to pyruvate, the dimeric form of PKM2 has alternative, nonglycolysis functions as a transcriptional coactivator to enhance the transcription of several proinflammatory cytokines. In the current study, we examined the impact of PKM2 on the pathogenesis of house dust mite-induced allergic airways disease in C57BL/6NJ mice. We report, in this study, that activation of PKM2, using the small molecule activator, TEPP46, augmented PKM activity in lung tissues and attenuated airway eosinophils, mucus metaplasia, and subepithelial collagen. TEPP46 attenuated IL-1ß-mediated airway inflammation and expression of proinflammatory mediators. Exposure to TEPP46 strongly decreased the IL-1ß-mediated increases in thymic stromal lymphopoietin (TSLP) and GM-CSF in primary tracheal epithelial cells isolated from C57BL/6NJ mice. We also demonstrate that IL-1ß-mediated increases in nuclear phospho-STAT3 were decreased by TEPP46. Finally, STAT3 inhibition attenuated the IL-1ß-induced release of TSLP and GM-CSF, suggesting that the ability of PKM2 to phosphorylate STAT3 contributes to its proinflammatory function. Collectively, these results demonstrate that the glycolysis-inactive form of PKM2 plays a crucial role in the pathogenesis of allergic airways disease by increasing IL-1ß-induced proinflammatory signaling, in part, through phosphorylation of STAT3.


Assuntos
Asma/imunologia , Hipersensibilidade/imunologia , Pneumonia/imunologia , Piruvato Quinase/imunologia , Transdução de Sinais/imunologia , Remodelação das Vias Aéreas/fisiologia , Animais , Asma/metabolismo , Feminino , Hipersensibilidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Pyroglyphidae/imunologia , Piruvato Quinase/metabolismo
8.
Am J Respir Cell Mol Biol ; 64(6): 709-721, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662229

RESUMO

Obesity is a risk factor for the development of asthma and represents a difficult-to-treat disease phenotype. Aerobic glycolysis is emerging as a key feature of asthma, and changes in glucose metabolism are linked to leukocyte activation and adaptation to oxidative stress. Dysregulation of PKM2 (pyruvate kinase M2), the enzyme that catalyzes the last step of glycolysis, contributes to house dust mite (HDM)-induced airway inflammation and remodeling in lean mice. It remains unclear whether glycolytic reprogramming and dysregulation of PKM2 also contribute to obese asthma. The goal of the present study was to elucidate the functional role of PKM2 in a murine model of obese allergic asthma. We evaluated the small molecule activator of PKM2, TEPP46, and assessed the role of PKM2 using conditional ablation of the Pkm2 allele from airway epithelial cells. In obese C57BL/6NJ mice, parameters indicative of glycolytic reprogramming remained unchanged in the absence of stimulation with HDM. Obese mice that were subjected to HDM showed evidence of glycolytic reprogramming, and treatment with TEPP46 diminished airway inflammation, whereas parameters of airway remodeling were unaffected. Epithelial ablation of Pkm2 decreased central airway resistance in both lean and obese allergic mice in addition to decreasing inflammatory cytokines in the lung tissue. Lastly, we highlight a novel role for PKM2 in the regulation of glutathione-dependent protein oxidation in the lung tissue of obese allergic mice via a putative IFN-γ-glutaredoxin1 pathway. Overall, targeting metabolism and protein oxidation may be a novel treatment strategy for obese allergic asthma.


Assuntos
Asma/enzimologia , Asma/patologia , Hipersensibilidade/enzimologia , Hipersensibilidade/patologia , Inflamação/enzimologia , Inflamação/patologia , Piruvato Quinase/metabolismo , Animais , Asma/complicações , Asma/parasitologia , Hiper-Reatividade Brônquica/complicações , Dieta Hiperlipídica , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glutationa/metabolismo , Glicólise , Homeostase/efeitos dos fármacos , Hipersensibilidade/complicações , Hipersensibilidade/parasitologia , Mediadores da Inflamação/metabolismo , Pulmão/enzimologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Modelos Biológicos , Piridazinas/administração & dosagem , Piridazinas/farmacologia , Pyroglyphidae , Pirróis/administração & dosagem , Pirróis/farmacologia
9.
Am J Physiol Lung Cell Mol Physiol ; 320(3): L356-L367, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325804

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by a disturbed redox balance and increased production of reactive oxygen species (ROS), which is believed to contribute to epithelial injury and fibrotic lung scarring. The main pulmonary sources of ROS include mitochondria and NADPH oxidases (NOXs), of which the NOX4 isoform has been implicated in IPF. Non-receptor SRC tyrosine kinases (SFK) are important for cellular homeostasis and are often dysregulated in lung diseases. SFK activation by the profibrotic transforming growth factor-ß (TGF-ß) is thought to contribute to pulmonary fibrosis, but the relevant SFK isoform and its relationship to NOX4 and/or mitochondrial ROS in the context of profibrotic TGF-ß signaling is not known. Here, we demonstrate that TGF-ß1 can rapidly activate the SRC kinase FYN in human bronchial epithelial cells, which subsequently induces mitochondrial ROS (mtROS) production, genetic damage shown by the DNA damage marker γH2AX, and increased expression of profibrotic genes. Moreover, TGF-ß1-induced activation of FYN involves initial activation of NOX4 and direct cysteine oxidation of FYN, and both FYN and mtROS contribute to TGF-ß-induced induction of NOX4. NOX4 expression in lung tissues of IPF patients is positively correlated with disease severity, although FYN expression is down-regulated in IPF and does not correlate with disease severity. Collectively, our findings highlight a critical role for FYN in TGF-ß1-induced mtROS production, DNA damage response, and induction of profibrotic genes in bronchial epithelial cells, and suggest that altered expression and activation of NOX4 and FYN may contribute to the pathogenesis of pulmonary fibrosis.


Assuntos
Brônquios/metabolismo , Células Epiteliais/metabolismo , Mitocôndrias/metabolismo , NADPH Oxidase 4/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Brônquios/patologia , Células Epiteliais/patologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Mitocôndrias/patologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
10.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L144-L158, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33951398

RESUMO

Aging is associated with a gradual loss of lung function due to increased cellular senescence, decreased regenerative capacity, and impaired innate host defense. One important aspect of innate airway epithelial host defense to nonmicrobial triggers is the secretion of alarmins such as IL-33 and activation of type 2 inflammation, which were previously found to depend on activation of the NADPH oxidase (NOX) homolog DUOX1, and redox-dependent signaling pathways that promote alarmin secretion. Here, we demonstrate that normal aging of C57BL/6J mice resulted in markedly decreased lung innate epithelial type 2 responses to exogenous triggers such as the airborne allergen Dermatophagoides pteronyssinus, which was associated with marked downregulation of DUOX1, as well as DUOX1-mediated redox-dependent signaling. DUOX1 deficiency was also found to accelerate age-related airspace enlargement and decline in lung function but did not consistently affect other features of lung aging such as senescence-associated inflammation. Intriguingly, observations of age-related DUOX1 downregulation and enhanced airspace enlargement due to DUOX1 deficiency in C57BL/6J mice, which lack a functional mitochondrial nicotinamide nucleotide transhydrogenase (NNT), were much less dramatic in C57BL/6NJ mice with normal NNT function, although the latter mice also displayed impaired innate epithelial injury responses with advancing age. Overall, our findings indicate a marked aging-dependent decline in (DUOX1-dependent) innate airway injury responses to external nonmicrobial triggers, but the impact of aging on DUOX1 downregulation and its significance for age-related senile emphysema development was variable between different C57BL6 substrains, possibly related to metabolic alterations due to differences in NNT function.


Assuntos
Lesão Pulmonar Aguda/patologia , Envelhecimento/patologia , Oxidases Duais/fisiologia , Inflamação/patologia , Enfisema Pulmonar/patologia , Mucosa Respiratória/patologia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Feminino , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/metabolismo , Mucosa Respiratória/metabolismo
11.
Am J Respir Cell Mol Biol ; 63(2): 198-208, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182090

RESUMO

The airway epithelium plays a critical role in innate responses to airborne allergens by secreting IL-1 family cytokines such as IL-1α and IL-33 as alarmins that subsequently orchestrate appropriate immune responses. Previous studies revealed that epithelial IL-33 secretion by allergens such as Alternaria alternata or house dust mite involves Ca2+-dependent signaling, via initial activation of ATP-stimulated P2YR2 (type 2 purinoceptor) and subsequent activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase DUOX1. We sought to identify proximal mechanisms by which epithelial cells sense these allergens and here highlight the importance of PAR2 (protease-activated receptor 2) and TRP (transient receptor potential) Ca2+ channels such as TRPV1 (TRP vanilloid 1) in these responses. Combined studies of primary human nasal and mouse tracheal epithelial cells, as well as immortalized human bronchial epithelial cells, indicated the importance of both PAR2 and TRPV1 in IL-33 secretion by both Alternaria alternata and house dust mite, based on both pharmacological and genetic approaches. TRPV1 was also critically involved in allergen-induced ATP release, activation of DUOX1, and redox-dependent activation of EGFR (epidermal growth factor receptor). Moreover, genetic deletion of TRPV1 dramatically attenuated allergen-induced IL-33 secretion and subsequent type 2 responses in mice in vivo. TRPV1 not only contributed to ATP release and P2YR2 signaling but also was critical in downstream innate responses to ATP, indicating potentiating effects of P2YR2 on TRPV1 activation. In aggregate, our studies illustrate a complex relationship between various receptor types, including PAR2 and P2YR2, in epithelial responses to asthma-relevant airborne allergens and highlight the central importance of TRPV1 in such responses.


Assuntos
Alérgenos/imunologia , Células Epiteliais/imunologia , Imunidade Inata/imunologia , Peptídeo Hidrolases/imunologia , Canais de Cátion TRPV/imunologia , Animais , Asma/imunologia , Brônquios/imunologia , Células Cultivadas , Epitélio/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pyroglyphidae/imunologia , Receptor PAR-2/imunologia , Mucosa Respiratória/imunologia , Transdução de Sinais/imunologia
12.
Am J Physiol Cell Physiol ; 318(2): C304-C327, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693398

RESUMO

Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.


Assuntos
Glutarredoxinas/metabolismo , Glutationa/metabolismo , Pneumopatias/metabolismo , Pulmão/metabolismo , Sequência de Aminoácidos , Animais , Antioxidantes/metabolismo , Cisteína/metabolismo , Dissulfetos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Estresse Oxidativo/fisiologia
13.
Biochemistry ; 59(36): 3300-3315, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32845139

RESUMO

Selenocysteine (Sec) is the 21st proteogenic amino acid in the genetic code. Incorporation of Sec into proteins is a complex and bioenergetically costly process that evokes the following question: "Why did nature choose selenium?" An answer that has emerged over the past decade is that Sec confers resistance to irreversible oxidative inactivation by reactive oxygen species. Here, we explore the question of whether this concept can be broadened to include resistance to reactive electrophilic species (RES) because oxygen and related compounds are merely a subset of RES. To test this hypothesis, we inactivated mammalian thioredoxin reductase (Sec-TrxR), a mutant containing α-methylselenocysteine [(αMe)Sec-TrxR], and a cysteine ortholog TrxR (Cys-TrxR) with various electrophiles, including acrolein, 4-hydroxynonenal, and curcumin. Our results show that the acrolein-inactivated Sec-TrxR and the (αMe)Sec-TrxR mutant could regain 25% and 30% activity, respectively, when incubated with 2 mM H2O2 and 5 mM imidazole. In contrast, Cys-TrxR did not regain activity under the same conditions. We posit that Sec enzymes can undergo a repair process via ß-syn selenoxide elimination that ejects the electrophile, leaving the enzyme in the oxidized selenosulfide state. (αMe)Sec-TrxR was created by incorporating the non-natural amino acid (αMe)Sec into TrxR by semisynthesis and allowed for rigorous testing of our hypothesis. This Sec derivative enables higher resistance to both oxidative and electrophilic inactivation because it lacks a backbone Cα-H, which prevents loss of selenium through the formation of dehydroalanine. This is the first time this unique amino acid has been incorporated into an enzyme and is an example of state-of-the-art protein engineering.


Assuntos
Mutação , Selenocisteína/análogos & derivados , Selenoproteínas/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Cisteína/química , Humanos , Oxirredução , Óxidos de Selênio/química , Selenocisteína/química , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/química , Tiorredoxinas/metabolismo
14.
J Allergy Clin Immunol ; 142(2): 435-450.e10, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29108965

RESUMO

BACKGROUND: Emerging studies suggest that enhanced glycolysis accompanies inflammatory responses. Virtually nothing is known about the relevance of glycolysis in patients with allergic asthma. OBJECTIVES: We sought to determine whether glycolysis is altered in patients with allergic asthma and to address its importance in the pathogenesis of allergic asthma. METHODS: We examined alterations in glycolysis in sputum samples from asthmatic patients and primary human nasal cells and used murine models of allergic asthma, as well as primary mouse tracheal epithelial cells, to evaluate the relevance of glycolysis. RESULTS: In a murine model of allergic asthma, glycolysis was induced in the lungs in an IL-1-dependent manner. Furthermore, administration of IL-1ß into the airways stimulated lactate production and expression of glycolytic enzymes, with notable expression of lactate dehydrogenase A occurring in the airway epithelium. Indeed, exposure of mouse tracheal epithelial cells to IL-1ß or IL-1α resulted in increased glycolytic flux, glucose use, expression of glycolysis genes, and lactate production. Enhanced glycolysis was required for IL-1ß- or IL-1α-mediated proinflammatory responses and the stimulatory effects of IL-1ß on house dust mite (HDM)-induced release of thymic stromal lymphopoietin and GM-CSF from tracheal epithelial cells. Inhibitor of κB kinase ε was downstream of HDM or IL-1ß and required for HDM-induced glycolysis and pathogenesis of allergic airways disease. Small interfering RNA ablation of lactate dehydrogenase A attenuated HDM-induced increases in lactate levels and attenuated HDM-induced disease. Primary nasal epithelial cells from asthmatic patients intrinsically produced more lactate compared with cells from healthy subjects. Lactate content was significantly higher in sputum supernatants from asthmatic patients, notably those with greater than 61% neutrophils. A positive correlation was observed between sputum lactate and IL-1ß levels, and lactate content correlated negatively with lung function. CONCLUSIONS: Collectively, these findings demonstrate that IL-1ß/inhibitory κB kinase ε signaling plays an important role in HDM-induced glycolysis and pathogenesis of allergic airways disease.


Assuntos
Asma/metabolismo , Hipersensibilidade/metabolismo , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Nariz/patologia , Mucosa Respiratória/metabolismo , Escarro/metabolismo , Animais , Antígenos de Dermatophagoides/imunologia , Células Cultivadas , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Glicólise , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-1beta/genética , Ácido Láctico/metabolismo , Pulmão/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/patologia , Proteínas Proto-Oncogênicas/metabolismo , Pyroglyphidae , RNA Interferente Pequeno/genética , Mucosa Respiratória/patologia , Transdução de Sinais
15.
J Biol Chem ; 291(44): 23282-23293, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27650496

RESUMO

The epidermal growth factor receptor (EGFR) plays a critical role in regulating airway epithelial homeostasis and responses to injury. Activation of EGFR is regulated by redox-dependent processes involving reversible cysteine oxidation by reactive oxygen species (ROS) and involves both ligand-dependent and -independent mechanisms, but the precise source(s) of ROS and the molecular mechanisms that control tyrosine kinase activity are incompletely understood. Here, we demonstrate that stimulation of EGFR activation by ATP in airway epithelial cells is closely associated with dynamic reversible oxidation of cysteine residues via sequential sulfenylation and S-glutathionylation within EGFR and the non-receptor-tyrosine kinase Src. Moreover, the intrinsic kinase activity of recombinant Src or EGFR was in both cases enhanced by H2O2 but not by GSSG, indicating that the intermediate sulfenylation is the activating modification. H2O2-induced increase in EGFR tyrosine kinase activity was not observed with the C797S variant, confirming Cys-797 as the redox-sensitive cysteine residue that regulates kinase activity. Redox-dependent regulation of EGFR activation in airway epithelial cells was found to strongly depend on activation of either the NADPH oxidase DUOX1 or the homolog NOX2, depending on the activation mechanism. Whereas DUOX1 and Src play a primary role in EGFR transactivation by wound-derived signals such as ATP, direct ligand-dependent EGFR activation primarily involves NOX2 with a secondary role for DUOX1 and Src. Collectively, our findings establish that redox-dependent EGFR kinase activation involves a dynamic and reversible cysteine oxidation mechanism and that this activation mechanism variably involves DUOX1 and NOX2.


Assuntos
Receptores ErbB/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Transdução de Sinais , Animais , Oxidases Duais , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Receptores ErbB/genética , Feminino , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , NADPH Oxidases/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
16.
Arch Biochem Biophys ; 616: 40-46, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28126370

RESUMO

The reversible oxidation of protein cysteine residues is well recognized as an important regulatory mechanism in redox-dependent cell signaling. Cysteine oxidation is diverse in nature and involves various post-translational modifications (sulfenic acids, disulfides, etc.) and the specific functional or structural impact of these specific oxidative events is still poorly understood. The proximal product of protein cysteine oxidation by biological reactive oxygen species (ROS) is sulfenic acid (Cys-SOH), and experimental evidence is accruing for the formation of Cys-SOH as intermediate in protein cysteine oxidation in various biological settings. However, the plausibility of protein Cys-SH oxidation by ROS has often been put in question because of slow reaction kinetics compared to more favorable reactions with abundant thiol-based reductants such as peroxiredoxins (Prx) or glutathione (GSH). This commentary aims to address this controversy by highlighting the unique physical properties in cells that may restrict ROS diffusion and allow otherwise less favorable cysteine oxidation of proteins. Some limitations of analytical tools to assess Cys-SOH are also discussed. We conclude that formation of Cys-SOH in biological systems cannot always be predicted based on kinetic analyses in homogenous solution, and may be facilitated by unique structural and physical properties of Cys-containing proteins within e.g. signaling complexes.


Assuntos
Oxirredução , Oxigênio/química , Peroxirredoxinas/química , Ácidos Sulfênicos/química , Animais , Cisteína/química , Dissulfetos/química , Glutationa/química , Humanos , Cinética , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/química , Transdução de Sinais
17.
J Allergy Clin Immunol ; 137(5): 1545-1556.e11, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26597162

RESUMO

BACKGROUND: The IL-1 family member IL-33 plays a critical role in type 2 innate immune responses to allergens and is an important mediator of allergic asthma. The mechanisms by which allergens provoke epithelial IL-33 secretion are still poorly understood. OBJECTIVE: Based on previous findings indicating involvement of the NADPH oxidase dual oxidase 1 (DUOX1) in epithelial wound responses, we explored the potential involvement of DUOX1 in allergen-induced IL-33 secretion and potential alterations in airways of asthmatic patients. METHODS: Cultured human or murine airway epithelial cells or mice were subjected to acute challenge with Alternaria alternata or house dust mite, and secretion of IL-33 and activation of subsequent type 2 responses were determined. The role of DUOX1 was explored by using small interfering RNA approaches and DUOX1-deficient mice. Cultured nasal epithelial cells from healthy subjects or asthmatic patients were evaluated for DUOX1 expression and allergen-induced responses. RESULTS: In vitro or in vivo allergen challenge resulted in rapid airway epithelial IL-33 secretion, which depended critically on DUOX1-mediated activation of epithelial epidermal growth factor receptor and the protease calpain-2 through a redox-dependent mechanism involving cysteine oxidation within epidermal growth factor receptor and the tyrosine kinase Src. Primary nasal epithelial cells from patients with allergic asthma were found to express increased DUOX1 and IL-33 levels and demonstrated enhanced IL-33 secretion in response to allergen challenge compared with values seen in nasal epithelial cells from nonasthmatic subjects. CONCLUSION: Our findings implicate epithelial DUOX1 as a pivotal mediator of IL-33-dependent activation of innate airway type 2 immune responses to common airborne allergens and indicate that enhanced DUOX1 expression and IL-33 secretion might present important contributing features of allergic asthma.


Assuntos
Alérgenos/imunologia , Interleucina-33/imunologia , NADPH Oxidases/imunologia , Rinite Alérgica/imunologia , Alternaria/imunologia , Animais , Líquido da Lavagem Broncoalveolar , Linhagem Celular , Células Cultivadas , Oxidases Duais , Células Epiteliais/imunologia , Receptores ErbB/imunologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/genética , Pyroglyphidae/imunologia , RNA Interferente Pequeno/genética
18.
Am J Respir Cell Mol Biol ; 55(3): 377-86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27035878

RESUMO

Protein S-glutathionylation (PSSG) is an oxidant-induced post-translational modification of protein cysteines that impacts structure and function. The oxidoreductase glutaredoxin-1 (Glrx1) under physiological conditions catalyzes deglutathionylation and restores the protein thiol group. The involvement of Glrx1/PSSG in allergic inflammation induced by asthma-relevant allergens remains unknown. In the present study, we examined the impact of genetic ablation of Glrx1 in the pathogenesis of house dust mite (HDM)-induced allergic airways disease in mice. Wild-type (WT) or Glrx1(-/-) mice were instilled intranasally with HDM on 5 consecutive days for 3 weeks. As expected, overall PSSG was increased in Glrx1(-/-) HDM mice as compared with WT animals. Total cells in bronchoalveolar lavage fluid were similarly increased in HDM-treated WT and Glrx1(-/-) mice. However, in response to HDM, mice lacking Glrx1 demonstrated significantly more neutrophils and macrophages but fewer eosinophils as compared with HDM-exposed WT mice. mRNA expression of the Th2-associated cytokines IL-13 and IL-6, as well as mucin-5AC (Muc5ac), was significantly attenuated in Glrx1(-/-) HDM-treated mice. Conversely, mRNA expression of IFN-γ and IL-17A was increased in Glrx1(-/-) HDM mice compared with WT littermates. Restimulation of single-cell suspensions isolated from lungs or spleens with HDM resulted in enhanced IL-17A and decreased IL-5 production in cells derived from inflamed Glrx1(-/-) mice compared with WT animals. Finally, HDM-induced tissue damping and elastance were significantly attenuated in Glrx1(-/-) mice compared with WT littermates. These results demonstrate that the Glrx1-PSSG axis plays a pivotal role in HDM-induced allergic airways disease in association with enhanced type 2 inflammation and restriction of IFN-γ and IL-17A.


Assuntos
Glutarredoxinas/metabolismo , Hipersensibilidade/patologia , Hipersensibilidade/parasitologia , Pulmão/patologia , Pulmão/parasitologia , Pyroglyphidae/fisiologia , Animais , Citocinas/genética , Citocinas/metabolismo , Glutationa/metabolismo , Hiperplasia , Hipersensibilidade/sangue , Hipersensibilidade/complicações , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Muco/metabolismo , Pneumonia/sangue , Pneumonia/complicações , Pneumonia/parasitologia , Pneumonia/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hipersensibilidade Respiratória/sangue , Hipersensibilidade Respiratória/parasitologia , Hipersensibilidade Respiratória/patologia , Hipersensibilidade Respiratória/fisiopatologia , Mecânica Respiratória , Células Th2/imunologia
19.
Am J Physiol Lung Cell Mol Physiol ; 311(5): L913-L923, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27612966

RESUMO

Acrolein is a major thiol-reactive component of cigarette smoke (CS) that is thought to contribute to increased asthma incidence associated with smoking. Here, we explored the effects of acute acrolein exposure on innate airway responses to two common airborne allergens, house dust mite and Alternaria alternata, and observed that acrolein exposure of C57BL/6 mice (5 ppm, 4 h) dramatically inhibited innate airway responses to subsequent allergen challenge, demonstrated by attenuated release of the epithelial-derived cytokines IL-33, IL-25, and IL-1α. Acrolein and other anti-inflammatory thiol-reactive electrophiles, cinnamaldehyde, curcumin, and sulforaphane, similarly inhibited allergen-induced production of these cytokines from human or murine airway epithelial cells in vitro. Based on our previous observations indicating the importance of Ca2+-dependent signaling, activation of the NADPH oxidase DUOX1, and Src/EGFR-dependent signaling in allergen-induced epithelial secretion of these cytokines, we explored the impact of acrolein on these pathways. Acrolein and other thiol-reactive electrophiles were found to dramatically prevent allergen-induced activation of DUOX1 as well as EGFR, and acrolein was capable of inhibiting EGFR tyrosine kinase activity via modification of C797. Biotin-labeling strategies indicated increased cysteine modification and carbonylation of Src, EGFR, as well as DUOX1, in response to acrolein exposure in vitro and in vivo, suggesting that direct alkylation of these proteins on accessible cysteine residues may be responsible for their inhibition. Collectively, our findings indicate a novel anti-inflammatory mechanism of CS-derived acrolein and other thiol-reactive electrophiles, by directly inhibiting DUOX1- and EGFR-mediated airway epithelial responses to airborne allergens.


Assuntos
Acroleína/farmacologia , Alérgenos/efeitos adversos , Brônquios/patologia , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , NADPH Oxidases/antagonistas & inibidores , Compostos de Sulfidrila/farmacologia , Acroleína/química , Administração por Inalação , Animais , Cálcio/metabolismo , Cisteína/metabolismo , Oxidases Duais , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Imunidade Inata/efeitos dos fármacos , Interleucina-33/metabolismo , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Pyroglyphidae/efeitos dos fármacos , Pyroglyphidae/fisiologia , Compostos de Sulfidrila/química , Quinases da Família src/metabolismo
20.
Annu Rev Physiol ; 73: 527-45, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21034220

RESUMO

This review focuses on the role of the venous valves in the genesis of thrombus formation in venous thromboembolic disease (VTE). Clinical VTE and the evidence for the valvular origin of venous thrombosis are reviewed. Virchow's triad is then used as a framework for discussion to approach the question posed regarding the link between venous valvular stasis-associated hypoxia and thrombosis. Thus, the effects of blood flow stasis, hypercoagulability of blood, and the characteristics of the vessel wall within the venous valvular sinus are assessed in turn.


Assuntos
Hipóxia/fisiopatologia , Trombose/fisiopatologia , Válvulas Venosas/fisiopatologia , Envelhecimento/fisiologia , Coagulação Sanguínea/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Feminino , Humanos , Fator 1 Induzível por Hipóxia/fisiologia , Masculino , Espécies Reativas de Oxigênio/metabolismo , Trombose/epidemiologia , Veias/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA