Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 104, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918836

RESUMO

BACKGROUND: Immune-positron emission tomography (PET) imaging with tracers that target CD8 and granzyme B has shown promise in predicting the therapeutic response following immune checkpoint blockade (ICB) in immunologically "hot" tumors. However, immune dynamics in the low T-cell infiltrating "cold" tumor immune microenvironment during ICB remain poorly understood. This study uses molecular imaging to evaluate changes in CD4 + T cells and CD8 + T cells during ICB in breast cancer models and examines biomarkers of response. METHODS: [89Zr]Zr-DFO-CD4 and [89Zr]Zr-DFO-CD8 radiotracers were used to quantify changes in intratumoral and splenic CD4 T cells and CD8 T cells in response to ICB treatment in 4T1 and MMTV-HER2 mouse models, which represent immunologically "cold" tumors. A correlation between PET quantification metrics and long-term anti-tumor response was observed. Further biological validation was obtained by autoradiography and immunofluorescence. RESULTS: Following ICB treatment, an increase in the CD8-specific PET signal was observed within 6 days, and an increase in the CD4-specific PET signal was observed within 2 days in tumors that eventually responded to immunotherapy, while no significant differences in CD4 or CD8 were found at the baseline of treatment that differentiated responders from nonresponders. Furthermore, mice whose tumors responded to ICB had a lower CD8 PET signal in the spleen and a higher CD4 PET signal in the spleen compared to non-responders. Intratumoral spatial heterogeneity of the CD8 and CD4-specific PET signals was lower in responders compared to non-responders. Finally, PET imaging, autoradiography, and immunofluorescence signals were correlated when comparing in vivo imaging to ex vivo validations. CONCLUSIONS: CD4- and CD8-specific immuno-PET imaging can be used to characterize the in vivo distribution of CD4 + and CD8 + T cells in response to immune checkpoint blockade. Imaging metrics that describe the overall levels and distribution of CD8 + T cells and CD4 + T cells can provide insight into immunological alterations, predict biomarkers of response to immunotherapy, and guide clinical decision-making in those tumors where the kinetics of the response differ.


Assuntos
Neoplasias da Mama , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Inibidores de Checkpoint Imunológico , Tomografia por Emissão de Pósitrons , Microambiente Tumoral , Animais , Microambiente Tumoral/imunologia , Feminino , Camundongos , Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linhagem Celular Tumoral , Zircônio , Compostos Radiofarmacêuticos , Radioisótopos
2.
Small ; 20(22): e2306726, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38152951

RESUMO

Polylactide-co-glycolide (PLG) nanoparticles hold immense promise for cancer therapy due to their enhanced efficacy and biodegradable matrix structure. Understanding their interactions with blood cells and subsequent biodistribution kinetics is crucial for optimizing their therapeutic potential. In this study, three doxorubicin-loaded PLG nanoparticle systems are synthesized and characterized, analyzing their size, zeta potential, morphology, and in vitro release behavior. Employing intravital microscopy in 4T1-tumor-bearing mice, real-time blood and tumor distribution kinetics are investigated. A mechanistic pharmacokinetic model is used to analyze biodistribution kinetics. Additionally, flow cytometry is utilized to identify cells involved in nanoparticle hitchhiking. Following intravenous injection, PLG nanoparticles exhibit an initial burst release (<1 min) and rapidly adsorb to blood cells (<5 min), hindering extravasation. Agglomeration leads to the clearance of one carrier species within 3 min. In stable dispersions, drug release rather than extravasation remains the dominant pathway for drug elimination from circulation. This comprehensive investigation provides valuable insights into the interplay between competing kinetics that influence the lifecycle of PLG nanoparticles post-injection. The findings advance the understanding of nanoparticle behavior and lay the foundation for improved cancer therapy strategies using nanoparticle-based drug delivery systems.


Assuntos
Doxorrubicina , Sistemas de Liberação de Medicamentos , Nanopartículas , Nanopartículas/química , Animais , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Microscopia Intravital/métodos , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linhagem Celular Tumoral , Distribuição Tecidual , Camundongos Endogâmicos BALB C , Ácido Poliglicólico/química , Feminino
3.
Mol Biol Rep ; 51(1): 646, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727931

RESUMO

BACKGROUND: Breast cancer (BC) is one of the most common cancers in the world. Despite the many advances that have been made in treating patients, many patients are still resistant to treatment. CD44 is one of the surface glycoproteins of BC cells that plays an important role in the proliferation of these cells and inhibition of their apoptosis. Therefore, targeting it can be a treatment way for BC patients. METHODS: In this study, the effect of anti-CD44 siRNA on the proliferation, apoptosis, and migration rate of MDA-MB-231 and 4T1 cells was investigated. The techniques used in this study were MTT assay, RT-PCR, and flow cytometry. RESULTS: The apoptosis and proliferation rates in CD44 siRNA-treated cells were higher and lower, respectively, compared to untreated cells. Also, cell migration was less in treated cells compared to untreated cells. CD44 siRNA also decreased the expression of CXCR4, c-myc, Vimentin, ROCK, and MMP-9. CONCLUSION: Finally, CD44 targeting can be a good treatment option to make BC cells more sensitive to apoptosis.


Assuntos
Apoptose , Neoplasias da Mama , Receptores de Hialuronatos , RNA Interferente Pequeno , Feminino , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/antagonistas & inibidores , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , RNA Interferente Pequeno/genética , Vimentina/metabolismo , Vimentina/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-38480514

RESUMO

The biologically produced gold nanoparticles (AuNPs) are novel carriers with promising use in targeted tumor therapy. Still, there are no studies regarding the efficacy of nanoparticle internalization by cancer and noncancer cells. In this study, AuNPs were produced by Fusarium oxysporum and analyzed by spectrophotometry, transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and Zetasizer. Obtained AuNPs were about 15 nm in size with a zeta potential of -35.8 mV. The AuNPs were added to cancer cells (4T1), noncancer cells (NIH/3T3), and macrophages (RAW264.7). The viability decreased in 4T1 (77 ± 3.74%) in contrast to NIH/3T3 and RAW264.7 cells (89 ± 4.9% and 90 ± 3.5%, respectively). The 4T1 cancer cells also showed the highest uptake and accumulation of Au (∼80% of AuNPs was internalized) as determined by graphite furnace atomic absorption spectroscopy. The lowest amount of AuNPs was internalized by the NIH/3T3 cells (∼30%). The NIH/3T3 cells exhibited prominent reorganization of F-actin filaments as examined by confocal microscopy. In RAW264.7, we analyzed the release of proinflammatory cytokines by flow cytometry and we found the AuNP interaction triggered transient secretion of tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). In summary, we proved the biologically produced AuNPs entered all the tested cell types and triggered cell-specific responses. High AuNP uptake by tumor cells was related to decreased cell viability, while low nanoparticle uptake by fibroblasts triggered F-actin reorganization without remarkable toxicity. Thus, the biologically produced AuNPs hold promising potential as cancer drug carriers and likely require proper surface functionalization to shield phagocytizing cells.

5.
Cancer Immunol Immunother ; 72(4): 851-864, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36104597

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype characterized by a lack of therapeutic targets. The paucity of effective treatment options motivated a number of studies to tackle this problem. Immunosuppressive cells infiltrated into the tumor microenvironment (TME) of TNBC are currently considered as candidates for new therapeutic targets. Myeloid-derived suppressor cells (MDSCs) have been reported to populate in the TME of TNBC, but their roles in the clinical and biological features of TNBC have not been clarified. This study identified that interleukin-34 (IL-34) released by TNBC cells is a crucial immunomodulator to regulate MDSCs accumulation in the TME. We provide evidence that IL-34 induces a differentiation of myeloid stem cells into monocytic MDSCs (M-MDSCs) that recruits regulatory T (Treg) cells, while suppressing a differentiation into polymorphonuclear MDSCs (PMN-MDSCs). As a result, the increase in M-MDSCs contributes to the creation of an immunosuppressive TME, and the decrease in PMN-MDSCs suppresses angiogenesis, leading to an acquisition of resistance to chemotherapy. Accordingly, blockade of M-MDSC differentiation with an estrogen receptor inhibitor or anti-IL-34 monoclonal antibody suppressed M-MDSCs accumulation causing retardation of tumor growth and restores chemosensitivity of the tumor by promoting PMN-MDSCs accumulation. This study demonstrates previously poorly understood mechanisms of MDSCs-mediated chemoresistance in the TME of TNBC, which is originated from the existence of IL-34, suggesting a new rationale for TNBC treatment.


Assuntos
Células Supressoras Mieloides , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Linfócitos T Reguladores/patologia , Interleucinas
6.
Cancer Immunol Immunother ; 72(11): 3825-3838, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37736849

RESUMO

Breast cancer is the leading malignancy in women worldwide, both in terms of incidence and mortality. Triple-negative breast cancer (TNBC) is the type with the worst clinical outcomes and with fewer therapeutic options than other types of breast cancer. GK-1 is a peptide that in the experimental model of the metastatic 4T1 breast cancer has demonstrated anti-tumor and anti-metastatic properties. Herein, GK-1 (5 mg/kg, i.v.) weekly administrated not only decreases tumor growth and the number of lung macro-metastases but also lung and lymph nodes micro-metastases. Histological analysis reveals that GK-1 reduced 57% of the intra-tumor vascular areas, diminished the leukemoid reaction's progression, and the spleens' weight and length. A significant reduction in VEGF-C, SDF-1, angiopoietin-2, and endothelin-1 angiogenic factors was induced. Moreover, GK-1 prevents T cell exhaustion in the tumor-infiltrating lymphocytes (TILs) decreasing PD-1 expression. It also increased IFN-γ and granzyme-B expression and the cytotoxic activity of CD8+ TILs cells against tumor cells. All these features were found to be associated with a better antitumor response and prognosis. Altogether, these results reinforce the potential of GK-1 to improve the clinical outcome of triple-negative breast cancer immunotherapy. Translation research is ongoing towards its evaluation in humans.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Exaustão das Células T , Linfócitos do Interstício Tumoral/metabolismo , Prognóstico , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo
7.
Cell Commun Signal ; 21(1): 50, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882786

RESUMO

BACKGROUND: To our current understanding, solid tumors depend on suppressed local immune reactions, often elicited by the interaction between tumor cells and tumor microenvironment (TME) components. Despite an improved understanding of anti-cancer immune responses in the TME, it is still unclear how immuno-suppressive TME are formed and how some cancer cells survive and metastasize. METHODS: To identify the major adaptations that cancer cells undergo during tumor development and progression, we compared the transcriptome and proteome from metastatic 66cl4 and non-metastatic 67NR cell lines in culture versus their corresponding mouse mammary primary tumors. Using confocal microscopy, RT-qPCR, flow cytometry and western blotting, we studied the signaling pathway and the mechanisms involved. In addition, we used public gene expression data from human breast cancer biopsies to evaluate the correlation between gene expression and clinical outcomes in patients. RESULTS: We found that type I interferon (IFN-I) response was a key differentially regulated pathway between metastatic and non-metastatic cell lines and tumors. The IFN-I response was active in metastatic cancer cells in culture and markedly dampened when these cells formed primary tumors. Interestingly, the opposite was observed in non-metastatic cancer cells and tumors. Consistent with an active IFN-I response in culture, the metastatic cancer cells displayed elevated levels of cytosolic DNA from both mitochondria and ruptured micronuclei with concomitant activation of cGAS-STING signaling. Interestingly, decreased IFN-I-related gene expression in breast cancer biopsies correlated with an unfavourable prognosis in patients. CONCLUSION: Our findings show that IFN-I response is dampened in the tumors with the metastatic ability and lower IFN-I expression predicts poor prognosis in triple-negative and HER2 enriched breast cancer patients. This study highlights the possibility of reactivating the IFN-I response as a potential therapeutic strategy in breast cancer. Video Abstract.


Assuntos
Neoplasias da Mama , Interferon Tipo I , Humanos , Animais , Camundongos , Feminino , Mama , Transdução de Sinais , Anticorpos , Microambiente Tumoral
8.
Biotechnol Appl Biochem ; 70(5): 1754-1771, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37254633

RESUMO

M2 macrophages are the most prevalent type in the tumor microenvironment and their polarization to M1 type can be used as a potential cancer immunotherapy. Here, we investigated the role of tumor microenvironment and particularly purified exosomes in M2 to M1 macrophage polarization. Rapamycin treatment on triple-negative breast cancer cells (TNBC) was performed. Tumor cells-derived exosomes (called texosomes) were isolated and characterized using scanning electron microscopy, transmission electron microscopy, dynamic light scattering, high-performance liquid chromatography, Fourier transform infrared, and Western blot assays. M2 mouse peritoneal macrophages were treated with rapamycin or rapamycin-texosome. Then, M1/M2 phenotype-specific marker genes and proteins were measured to assess the degree of M2 to M1 polarization. Finally, nitric oxide (NO) production, phagocytosis, and efferocytosis assays were assessed to verify the functionality of the polarized macrophages. Purified rapamycin-texosomes significantly increased the expression of the M1 markers (Irf5, Nos2, and CD86) and decreased M2 markers (Arg, Ym1, and CD206). In addition, the levels of M1-specific cytokines tumor necrosis factor alpha and interleukin 1ß (IL-1ß) were increased, whereas the levels of M2 specific cytokines IL-10 and transforming growth factor beta were declined. Furthermore, texosome treatment increased NO concentration and phagocytosis and decreased efferocytosis indicating M1 polarization. These findings suggest rapamycin-texosomes can induce M2 to M1 macrophages polarization as a potential immunotherapy for TNBC.


Assuntos
Exossomos , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Sirolimo , Exossomos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Fenótipo , Microambiente Tumoral , Fatores Reguladores de Interferon/metabolismo
9.
Phytother Res ; 37(8): 3394-3407, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37012651

RESUMO

Triple-negative breast cancer (TNBC) does not express estrogen receptor, progesterone receptor, and human epidermal growth factor receptor; therefore, TNBC lacks targeted therapy, and chemotherapy is the only available treatment for this illness but causes side effects. A putative strategy for the treatment of TNBC could be the use of the polyphenols such as α-Mangostin (α-M), which has shown anticancerogenic effects in different cancer models and can modulate the inflammatory and prooxidant state in several pathological models. The redox state, oxidative stress (OS), and oxidative damage are highly related to cancer development and its treatment. Thus, this study aimed to evaluate the effects of α-M on redox state, mitochondrial metabolism, and apoptosis in 4T1 mammary carcinoma cells. We found that α-M decreases both protein levels and enzymatic activity of catalase, and increases reactive oxygen species, oxidized proteins and glutathione disulfide, which demonstrates that α-M induces oxidative damage. We also found that α-M promotes mitochondrial dysfunction by abating basal respiration, the respiration ligated to oxidative phosphorylation (OXPHOS), and the rate control of whole 4T1 cells. Additionally, α-M also decreases the levels of OXPHOS subunits of mitochondrial complexes I, II, III, and adenosine triphosphate synthase, the activity of mitochondrial complex I as well as the levels of peroxisome proliferator-activated receptor-gamma co-activator 1α, showing a mitochondrial mass reduction. Then, oxidative damage and mitochondrial dysfunction induced by α-M induce apoptosis of 4T1 cells, which is evidenced by B cell lymphoma 2 decrease and caspase 3 cleavage. Taken together, our results suggest that α-M induces OS and mitochondrial dysfunction, resulting in 4T1 cell death through apoptotic mechanisms.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Mitocôndrias
10.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674685

RESUMO

Osthole (OST) is a simple coumarin derivative with pharmacological effects in many types of cancer cells. However, its role and its mechanism of action in breast cancer 4T1 cells remain unclear. In this study, we explored the effects and potential mechanisms of action of OST in 4T1 cells. The MTT, PI, and Annexin V-FITC/PI methods were used to evaluate the effects of OST-treated and untreated 4T1 cells on viability, cell cycle, and apoptosis, respectively. UPLC-Q-TOF/MS combined with multivariate data analysis was used to screen potential biomarkers relevant to the therapeutic mechanisms of OST. Additionally, mTOR, SREBP1, and FASN protein levels were detected using western blotting in OST-treated and untreated 4T1 cells. OST inhibited 4T1 cell proliferation, blocked the cells from remaining in S-phase, and induced apoptosis. In 4T1 cells, OST mainly affected the phospholipid biosynthesis, methyl histidine metabolism, pyrimidine metabolism, and ß-oxidation of very long chain fatty acid pathways, suggesting that metabolic changes related to lipid metabolism-mediated signaling systems were the most influential pathways, possibly via inhibition of mTOR/SREBP1/FASN signaling. Our findings reveal biomarkers with potential therapeutic effects in breast cancer and provide insight into the therapeutic and metabolic mechanisms of OST in 4T1 cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Cumarínicos/farmacologia , Serina-Treonina Quinases TOR , Metabolômica , Biomarcadores
11.
Molecules ; 28(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110575

RESUMO

Chalcones are interesting anticancer drug candidates which have attracted much interest due to their unique structure and their extensive biological activity. Various functional modifications in chalcones have been reported, along with their pharmacological properties. In the current study, novel chalcone derivatives with the chemical base of tetrahydro-[1,2,4]triazolo[3,4-a]isoquinolin-3-yl)-3-arylprop-2-en-1-one were synthesized, and the structure of their molecules was confirmed through NMR spectroscopy. The antitumor activity of these newly synthesized chalcone derivatives was tested on mouse (Luc-4T1) and human (MDA-MB-231) breast cancer cell lines. The antiproliferative effect was evaluated through SRB screening and the MTT assay after 48 h of treatment at different concentrations. Interestingly, among the tested chalcone derivatives, chalcone analogues with a methoxy group were found to have significant anticancer activity and displayed gradient-dependent inhibition against breast cancer cell proliferation. The anticancer properties of these unique analogues were examined further by cytometric analysis of the cell cycle, quantitative PCR, and the caspases-Glo 3/7 assay. Chalcone methoxy derivatives showed the capability of cell cycle arrest and increased Bax/Bcl2 mRNA ratios as well as caspases 3/7 activity. The molecular docking analysis suggests that these chalcone methoxy derivatives may inhibit anti-apoptotic proteins, particularly cIAP1, BCL2, and EGFRK proteins. In conclusion, our findings confirm that chalcone methoxy derivatives could be considered to be potent drug candidates against breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Chalcona , Chalconas , Humanos , Animais , Camundongos , Feminino , Chalconas/química , Chalcona/química , Simulação de Acoplamento Molecular , Proliferação de Células , Pontos de Checagem do Ciclo Celular , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/química , Apoptose , Isoquinolinas/farmacologia , Caspases , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
12.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(1): 88-100, 2023 Feb 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-37283122

RESUMO

OBJECTIVES: To investigate the mechanism of Xuanhusuo powder (XHSP) inhibiting the differentiation of spleen myeloid-derived suppressor cells (MDSCs) in breast cancer mice. METHODS: Forty-eight BALB/c female mice aged 4-5 weeks were selected, 6 of them were in normal control group, while others were in tumor-bearing models established by orthotopic injection of 4T1 cells into the subcutaneous fat pad of the second pair of left mammary glands. The tumor-bearing mice were divided into granulocyte colony stimulating factor (G-CSF) control group, G-CSF knock-down group, model control group, XHSP small dose group, XHSP medium dose group, XHSP high dose group, and cyclophosphamide (CTX) group, with 6 mice in each group. G-CSF control group and G-CSF knock-down group were constructed by stably transfecting 4T1 cells established by shRNA lentivirus combined with puromycin selection. 48 h after the model was established, XHSP small, medium, high dose group were given 2, 4, 8 g·kg-1·d-1 intragastric administration once a day, respectively. CTX was given 30 mg/kg by intraperitoneal injection, once every other day. The other groups were given an equal volume of 0.5% hydroxymethylcellulose sodium. The drugs in each group were continuously administered for 25 d. Histological changes in spleen were observed by HE staining, the proportion of MDSCs subsets in the spleen were detected by flow cytometry, the co-expression of CD11b and Ly6G in the spleen was detected by immunofluorescence, and the concentration of G-CSF in peripheral blood was detected by ELISA. The spleen of tumor-bearing mice was co-cultured with 4T1 stably transfected cell lines in vitro, treated with XHSP (30 µg/mL) for 24 h, and the co-expression of CD11b and Ly6G in the spleen was detected by immunofluorescence. 4T1 cells were treated by XHSP (10, 30, 100 µg/mL) for 12 h. The mRNA level of G-CSF was detected by realtime RT-PCR. RESULTS: Compared with normal mice, the red pulp of the spleen in tumor-bearing mice was widened with megakaryocyte infiltration. The proportion of spleen polymorphonucleocyte-like MDSCs (PMN-MDSCs) was significantly increased (P<0.01) and the co-expression of CD11b and Ly6G was increased, and the concentration of G-CSF in peripheral blood was significantly increased (P<0.01). However, XHSP could significantly reduce the proportion of PMN-MDSCs (P<0.05) and the co-expression of CD11b and Ly6G in the spleen, down-regulate the mRNA level of G-CSF in 4T1 cells (P<0.01). The concentration of G-CSF in peripheral blood of tumor-bearing mice also decreased (P<0.05) and tumor volume was reduced and splenomegaly was improved (all P<0.05). CONCLUSIONS: XHSP may play an anti-breast cancer role by down-regulating G-CSF, negatively regulating the differentiation of MDSCs, and reconstruct the spleen myeloid microenvironment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Medicamentos de Ervas Chinesas , Animais , Camundongos , Medicamentos de Ervas Chinesas/administração & dosagem , Baço/citologia , Baço/efeitos dos fármacos , Células Supressoras Mieloides/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Feminino , Neoplasias da Mama/tratamento farmacológico , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Antineoplásicos/administração & dosagem
13.
Cell Immunol ; 382: 104639, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375313

RESUMO

4T1 cell-mediated TNBC breast cell carcinoma is a highly malignant mice tumor model which resembles an advanced stage of breast cancer in humans. Tumor progression occurs depending on the intra-tumoral balance of pro- and anti- tumorigenic immune cells. Enhancement of T-cell-mediated anti-tumor immunity will be advantageous for inhibiting tumor progression and improving the efficacy of cancer therapy. This study is focused on alleviating suppressed anti-tumor immune response by improving CD4+ T follicular helper cell (Tfh) response in 4T1 mice. We employed anti-IL10 mAb along with metabolic drugs 2-deoxy-D-glucose (2DG) which inhibits the glycolytic pathway and Cpt1a inhibitor Etomoxir which inhibits FAO. AMPK activator AICAR with or without anti-IL10 mAb was also used to ameliorate metabolic stress and exhaustion faced by immune cells. Our results demonstrate that synergistic treatment with 2DG/Etomoxir + anti-IL10 mAb induced Tfh cell, memory B, and GC B cell response more potently compared to treatment with 2DG or Etomoxir treatment alone as observed in several LNs and tumor tissue of 4T1 mouse. However, AICAR + anti-IL10 mAb increased the frequency of intratumoral Tfh cells, simultaneously downregulated Tfr cells; and improved humoral response by stimulating upregulation of memory B, GC B, and plasmablasts in tumor-draining, axillary, and mesenteric LNs of 4T1 mouse.


Assuntos
Proteínas Quinases Ativadas por AMP , Células T Auxiliares Foliculares , Humanos , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos B , Linfócitos T Auxiliares-Indutores , Linfócitos T Reguladores , Interleucina-10/metabolismo
14.
Calcif Tissue Int ; 111(5): 535-545, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35896728

RESUMO

We evaluated whether whole-body vibration (WBV) prevented bone loss induced by breast cancer (BC) metastasis and the involvement of bone marrow vasculature. One day after orthotopic transplantation of mammary 4T1 tumor cells, 8-week-old BALB/c mice were subjected to 0.3 g/90 Hz vertical vibration for 20 min/day for 5 days/week (BC-WBV) or sham-handled (BC-Sham) over 3 weeks. Age-matched intact mice (Intact) were also sham-handled. Both tibiae were harvested from BC-WBV (n = 7), BC-Sham (n = 9), and Intact (n = 5) mice for bone structure imaging by synchrotron radiation-based computed tomography (SRCT) and hematoxylin and eosin staining, whereas right tibiae were harvested from other BC-WBV and BC-Sham (n = 6 each) mice for vascular imaging by SRCT. Tumor cells were similarly widespread in the marrow in BC-WBV and BC-Sham mice. In BC-Sham mice, cortical bone volume, trabecular volume fraction, trabecular thickness, trabecular number density, and bone mineral density were smaller, and marrow volume and trabecular separation were larger than in Intact mice. However, although trabecular thickness was smaller in BC-WBV than Intact mice, the others did not differ between the two groups. Serum osteocalcin tended to be higher in BC-WBV than BC-Sham mice. Compared with BC-Sham mice, BC-WBV mice had a smaller vessel diameter, a trend of a larger vessel number density, and smaller vessel diameter heterogeneity. In conclusion, WBV mitigates bone loss in BC bone metastasis, which may be partly due to increased bone anabolism. The alteration of marrow vasculature appears to be favorable for anti-tumor drug delivery. Further studies are needed to clarify the multiple actions of WBV on bone, tumor, and marrow vasculature and how they contribute to bone protection in BC metastasis.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Vibração , Animais , Camundongos , Densidade Óssea , Camundongos Endogâmicos BALB C , Osteocalcina/sangue , Neoplasias Ósseas/secundário , Transplante de Neoplasias
15.
Virol J ; 19(1): 74, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459242

RESUMO

BACKGROUND: Selectively replicating herpes simplex virus-2 (HSV-2) vector is a promising treatment for cancer therapy. The insertion of multiple transgenes into the viral genome has been performed to improve its oncolytic activity. METHODS: Herein, we simultaneously constructed five "armed" oncolytic viruses (OVs), designated oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19. These OVs delete the ICP34.5 and ICP47 genes with the insertion of transgenes into the deleted ICP34.5 locus. The anti-tumor efficacy in vivo was tested in the syngeneic 4T1 and CT26 tumor-bearing mice model. RESULTS: The OVs showed comparable oncolytic capability in vitro. The combination therapy of oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19 exhibited the highest tumor inhibition efficacy compared with the treatment of single OV or two OVs combination. CONCLUSIONS: The OVs armed with different transgenes combination therapy also named 5-valent oHSV2 (also called cocktail therapy) might be an effective therapeutic strategy for solid tumors.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Vetores Genéticos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Herpesvirus Humano 2/genética , Interleucina-12/genética , Interleucina-15/genética , Interleucina-7/genética , Camundongos , Neoplasias/tratamento farmacológico , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética
16.
Mol Pharm ; 19(11): 4199-4211, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36287201

RESUMO

The effectiveness and normal tissue toxicity of a novel nanoparticle depot (NPD) brachytherapy seed incorporating gold nanoparticles (AuNPs) labeled with ß-particle emitting, 90Y (termed a "radiation nanomedicine"), were studied for the treatment of 4T1 triple-negative murine mammary carcinoma tumors in Balb/c mice and for inducing an abscopal effect on a distant non-irradiated tumor alone or combined with anti-PD-L1 immune checkpoint antibodies. Balb/c mice with two subcutaneous 4T1 tumors─a primary tumor and a distant secondary tumor were implanted intratumorally (i.t.) in the primary tumor with NPD incorporating 3.5 MBq of 90Y-AuNPs (1 × 1014 AuNPs) or unlabeled AuNPs, alone or combined with systemically administered anti-PD-L1 antibodies (200 µg i.p. three times/week for 2 weeks) or received anti-PD-L1 antibodies alone or no treatment. The primary tumor was strongly growth-inhibited over 14 d by NPD incorporating 90Y-AuNPs but only very modestly inhibited by NPD incorporating unlabeled AuNPs. Anti-PD-L1 antibodies alone were ineffective, and combining anti-PD-L1 antibodies with NPD incorporating 90Y-AuNPs did not further inhibit the growth of the primary tumor. Secondary tumor growth was inhibited by treatment of the primary tumor with NPD incorporating 90Y-AuNPs, and growth inhibition was enhanced by anti-PD-L1 antibodies. Treatment of the primary tumor with NPD incorporating unlabeled AuNPs or anti-PD-L1 antibodies alone had no effect on secondary tumor growth. Biodistribution studies showed high uptake of 90Y in the primary tumor [516-810% implanted dose/g (%ID/g)] but very low uptake in the secondary tumor (0.033-0.16% ID/g) and in normal tissues (<0.5% ID/g) except for kidneys (5-8% ID/g). Very high radiation absorbed doses were estimated for the primary tumor (472 Gy) but very low doses in the secondary tumor (0.13 Gy). There was highdose-heterogeneity in the primary tumor with doses as high as 9964 Gy in close proximity to the NPD, decreasing rapidly with distance from the NPD. Normal organ doses were low (<1 Gy) except for kidneys (4 Gy). No normal tissue toxicity was observed, but white blood cell counts (WBC) decreased in tumor-bearing mice treated with NPD incorporating 90Y-AuNPs. Decreased WBC counts were interpreted as tumor response and not toxicity since these were higher than that in healthy non-tumor-bearing mice, and there was a direct association between WBC counts and 4T1 tumor burden. We conclude that implantation of NPD incorporating 90Y-AuNPs into a primary 4T1 tumor in Balb/c mice strongly inhibited tumor growth and combined with anti-PD-L1 antibodies induced an abscopal effect on a distant secondary tumor. This radiation nanomedicine is promising for the local treatment of triple-negative breast cancer tumors in patients, and these therapeutic effects may extend to non-irradiated lesions, especially when combined with checkpoint immunotherapy.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Distribuição Tecidual
17.
Protein Expr Purif ; 200: 106153, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35995320

RESUMO

BACKGROUND: Myeloid derived suppressor cells (MDSCs) are an immature heterogeneous population of myeloid lineage that attenuate the anti-tumor immune responses. Depletion of MDSCs has been shown to improve efficacy of cancer immunotherapeutic approaches. Here, we expressed and characterized a peptibody which had previously been defined by phage display technique capable of recognizing and depleting murine MDSCs. MATERIALS AND METHODS: Using splicing by overlap extension (SOE) PCR, the coding sequence of the MDSC binding peptide and linker were synthesized and then ligated into a home-made expression plasmid containing mouse IgG2a Fc. The peptibody construct was transfected into CHO-K1 cells by lipofectamine 3000 reagent and the resulting fusion protein was purified with protein G column and subsequently characterized by ELISA, SDS-PAGE and immunoblotting. The binding profile of the peptibody to splenic MDSCs and its MDSC depletion ability were then tested by flow cytometry. RESULTS: The purified peptibody appeared as a 70 KDa band in Western blot. It could bind to 98.8% of splenic CD11b+/Gr-1+ MDSCs. In addition, the intratumoral MDSCs were significantly depleted after peptibody treatment compared to their PBS-treated negative control counterparts (P < 0.05). CONCLUSION: In this study, a peptibody capable of depleting intratumoral MDSCs, was successfully expressed and purified. Our results imply that it could be considered as a potential tool for research on cancer immunotherapy.


Assuntos
Carcinoma , Células Supressoras Mieloides , Animais , Carcinoma/metabolismo , Clonagem Molecular , Imunoglobulina G/metabolismo , Camundongos , Células Supressoras Mieloides/metabolismo , Microambiente Tumoral
18.
Bull Math Biol ; 85(1): 7, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542180

RESUMO

Triple-negative breast cancer (TNBC) is a heterogenous disease that is defined by its lack of targetable receptors, thus limiting treatment options and resulting in higher rates of metastasis and recurrence. Combination chemotherapy treatments, which inhibit tumor cell proliferation and regeneration, are a major component of standard-of-care treatment of TNBC. In this manuscript, we build a coupled ordinary differential equation model of TNBC with compartments that represent tumor proliferation, necrosis, apoptosis, and immune response to computationally describe the biological tumor affect to a combination of chemotherapies, doxorubicin (DRB) and paclitaxel (PTX). This model is parameterized using longitudinal [18F]-fluorothymidine positron emission tomography (FLT-PET) imaging data which allows for a noninvasive molecular imaging approach to quantify the tumor proliferation and tumor volume measurements for two murine models of TNBC. Animal models include a human cell line xenograft model, MDA-MB-231, and a syngeneic 4T1 mammary carcinoma model. The mathematical models are parameterized and the percent necrosis at the end time point is predicted and validated using histological hematoxylin and eosin (H&E) data. Global Sobol' sensitivity analysis is conducted to further understand the role each parameter plays in the model's goodness of fit to the data. In both the MDA-MB-231 and the 4T1 tumor models, the designed mathematical model can accurately describe both tumor volume changes and final necrosis volume. This can give insight into the ordering, dosing, and timing of DRB and PTX treatment. More importantly, this model can also give insight into future novel combinations of therapies and how the immune system plays a role in therapeutic response to TNBC, due to its calibration to two types of TNBC murine models.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Conceitos Matemáticos , Modelos Biológicos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proliferação de Células , Quimioterapia Combinada , Necrose/tratamento farmacológico , Apoptose
19.
Drug Dev Res ; 83(8): 1906-1922, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36322473

RESUMO

Here, we describe the synthesis and biologic activity evaluation of 20 novel synthetic marine sponge alkaloid analogues with 2-amino-1H-imidazol (2-AI) core. Cytotoxicity was tested on murine 4T1 breast cancer, A549 human lung cancer, and HL-60 human myeloid leukemia cells by the resazurin assay. A total of 18 of 20 compounds showed cytotoxic effect on the cancer cell lines with different potential. Viability of healthy human fibroblasts and peripheral blood mononuclear cells upon treatment was less hampered compared to cancer cell lines supporting tumor cell specific cytotoxicity of our compounds. The most cytotoxic compounds resulted the following IC50 values 28: 2.91 µM on HL-60 cells, and 29: 3.1 µM on 4T1 cells. The A549 cells were less sensitive to the treatments with IC50 15 µM for both 28 and 29. Flow cytometry demonstrated the apoptotic effect of the most active seven compounds inducing phosphatidylserine exposure and sub-G1 fragmentation of nuclear DNA. Cell cycle arrest was also observed. Four compounds caused depolarization of the mitochondrial membrane potential as an early event of apoptosis. Two lead compounds inhibited tumor growth in vivo in the 4T1 triple negative breast cancer and A549 human lung adenocarcinoma xenograft models. Novel marine sponge alkaloid analogues are demonstrated as potential anticancer agents for further development.


Assuntos
Antineoplásicos , Poríferos , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Leucócitos Mononucleares , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células
20.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805931

RESUMO

Arsenicals have been widely used in the treatment of cancers such as leukemia and other tumors. However, their side effects limit their clinical application. Stiripentol, a second-line adjunctive treatment for epilepsy with a good safety profile, inhibits microsomal cytochrome-P450-family enzymes to extend the retention time of co-administration. Inspired by the metabolism of stiripentol, the 1,3-benzodioxole responsible for the inhibition and its metabolic derivatives were conjugated with arsenical precursors. The fabricated arsenicals were eliminated much slower in mice and maintained an efficient concentration in the blood for a longer time than that of the arsenical precursors. They also performed better in anti-proliferation by inhibiting the thioredoxin system to induce oxidative stress, and concomitantly to initiate apoptosis in vitro and in vivo. The fabricated arsenicals reversed the hemogram of tumor-bearing mice to normal and eliminated the tumor without causing damage to any organs, exhibiting a good design strategy and pre-clinical application for leukemia and other tumors.


Assuntos
Arsenicais , Leucemia , Neoplasias , Animais , Apoptose , Arsenicais/farmacologia , Arsenicais/uso terapêutico , Dioxóis , Leucemia/tratamento farmacológico , Camundongos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA